Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces

  • Donatella Danielli
  • Nicola Garofalo
  • Nguyen Cong Phuc
Part of the International Mathematical Series book series (IMAT, volume 8)

We consider various types of Hardy-Sobolev inequalities on a Carnot-Caratheodory space (Ω, d) associated to a system of smooth vector fields Χ = {Χ 1,Χ 2,…,Χm} on Rn satisfying the Hormander finite rank condition rank Lie[Χ 1,…, Ωm] ≡ n. One of our main concerns is the trace inequality \(\int\limits_\Omega ^{} {|\ell \left( x \right)} |^p V\left( x \right)dx \le C\int\limits_\Omega ^{} {|X\ell |^P dx},\ell \in C_0^\infty \left( \Omega \right),\) where V is a general weight, i.e., a nonnegative locally integrable function on Ω, and 1 < p < +∞. Under sharp geometric assumptions on the domain Ω C Rn that can be measured equivalently in terms of subelliptic capacities or Hausdorff contents, we establish various forms of Hardy-Sobolev type inequalities.


Local Parameter Heisenberg Group Sobolev Inequality Hardy Inequality Carnot Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ancona, A.: On strong barriers and an inequality of Hardy for domains in Rn. J. London Math. Soc. 34., 274–290 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biroli, M.: Schrödinger type and relaxed Dirichlet problems for the subelliptic p-Laplacian. Potential Anal. 15, 1–16 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Björn, J., MacManus, P., Shanmugalingam, N.: Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces. J. Anal. Math. 85, 339–369 (2001)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Capogna, L., Danielli, D., Garofalo, N.: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations. Commun. Partial Differ. Equ. 18, no. 9–10, 1765–1794 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Capogna, L., Danielli, D., Garofalo, N.: Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Am. J. Math. 118, no.6, 1153–1196 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Capogna, L., Danielli, D., Garofalo, N.: Subelliptic mollifiers and a basic pointwise estimate of Poincaré type. Math. Z. 226, 147–154 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Capogna, L., Garofalo, N.: Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics. J. Fourier Anal. Appl. 4, no. 4–5, 403–432 (1998)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Chow, W.L.: Über systeme von linearen partiellen Differentialgleichungen erster Ord-nung. Math. Ann. 117, 98–105 (1939)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ciatti, P., Ricci, F., Sundari, M.: Heisenberg-Pauli-Weyl uncertainty inequalities and polynomial volume growth. Adv. Math. 215, 616–625 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    D'Ambrosio, L.: Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) IV, 451–486 (2005)MathSciNetGoogle Scholar
  12. 12.
    Danielli, D.: Regularity at the boundary for solutions of nonlinear subelliptic equations. Indiana Univ. Math. J. 44, 269–285 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Danielli, D.: A Fefferman-Phong type inequality and applications to quasilinear subel-liptic equations. Potential Anal. 11, 387–413 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Danielli, D., Garofalo, N.: Green Functions in Nonlinear Potential Theory in Carnot Groups and the Geometry of their Level Sets. Preprint (2003)Google Scholar
  15. 15.
    Danielli, D., Garofalo, N., Phuc, N.C.: Hardy-Sobolev Inequalities with Sharp Constants in Carnot-Carath´eodory Spaces. Preprint (2008)Google Scholar
  16. 16.
    Duc, D.M., Phuc, N.C., Nguyen, T.V.: Weighted Sobolev's inequalities for bounded domains and singular elliptic equations. Indiana Univ. Math. J. 56, 615–642 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fefferman, C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Folland, G.B., Stein,E.M.: Hardy Spaces on Homogeneous Groups. Princeton Univ. Press, Princeton, NJ (1982)zbMATHGoogle Scholar
  19. 19.
    Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79, 373–376 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields. Boll. Unione Mat. Ital., VII, Ser. B 11, no. 1, 83–117 (1997)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40, no. 2, 313–356 (1990)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot- Caratheodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Garofalo, N., Nhieu, D.M.: Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces. J. Anal. Math. 74, 67–97 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hajlasz, P.: Pointwise Hardy inequalities, Proc. Am. Math. Soc. 127, 417–423 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Hansson, K., Maz’ya, V.G., Verbitsky, I.E.: Criteria of solvability for multidimensional Riccati equations. Ark. Mat. 37, 87–120 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Hardy, G.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Heinonen, J., Holopainen, I.: Quasiregular maps on Carnot groups. J. Geom. Anal. 7, no. 1, 109–148 (1997)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Heinonen, J., Kilpelainen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, Oxford (1993)zbMATHGoogle Scholar
  31. 31.
    Hormander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Hunt, R.: On L p,q spaces. Eins. Math. 12, 249–276 (1966)zbMATHGoogle Scholar
  33. 33.
    Jerison, D.: The Poincaré inequality for vector fields satisfying Hormander's condition. Duke Math. J. 53, 503–523 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258, 147–153 (1980)zbMATHCrossRefGoogle Scholar
  35. 35.
    Kilpelainen, T., Maly, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Kombe, I.: Sharp Weighted Hardy Type Inequalities and Uncertainty Principle Inequality on Carnot Groups. Preprint (2005)Google Scholar
  37. 37.
    Lehrbäck, J.: Pointwise Hardy inequalities and uniformly fat sets. Proc. Am. Math. Soc. [To appear]Google Scholar
  38. 38.
    Lewis, J.L.: Uniformly fat sets. Trans. Am. Math. Soc. 308, 177–196 (1988)zbMATHCrossRefGoogle Scholar
  39. 39.
    Lohoué, N.: Une variante de l’inégalité de Hardy. Manuscr. Math. 123, 73–78 (2007)zbMATHCrossRefGoogle Scholar
  40. 40.
    Maz'ya, V.G.: The negative spectrum of the n-dimentional Schrödinger operator (Russian). Dokl. Akad. Nauk SSSR 144, 721–722 (1962); English transl.: Sov. Math., Dokl. 3, 808–810 (1962)MathSciNetGoogle Scholar
  41. 41.
    Maz'ya, V.G.: Sobolev Spaces. Springer-Verlag, Berlin-Tokyo (1985)Google Scholar
  42. 42.
    Mikkonen, P.: On the Wolff potential and quasilinear elliptic equations involving measures. Ann. Acad. Sci. Fenn., Ser AI, Math. Dissert. 104 (1996)Google Scholar
  43. 43.
    Monti, R., Morbidelli, D.: Regular domains in homogeneous groups. Trans. Am. Math. Soc. 357, no. 8, 2975–3011 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: Basics properties. Acta Math. 155, 103–147 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Niu, P., Zhang, H., Wang, Y.: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 129, no. 12, 3623–3630 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Rashevsky, P.K.: Any two points of a totally nonholonomic space may be connected by an admissible line (Russian). Uch. Zap. Ped. Inst. Liebknechta, Ser. Phys. Math. 2, 83–94 (1938)Google Scholar
  47. 47.
    Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta. Math. 137, 247–320 (1976)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Sanchez-Calle, A.: Fundamental solutions and geometry of sum of squares of vector fields. Invent. Math. 78, 143–160 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Sobolev, S.L.: On a theorem of functional analysis (Russian). Mat. Sb. 46, 471–497 (1938); English transl.: Am. Math. Soc., Transl., II. Ser. 34, 39–68 (1963)Google Scholar
  50. 50.
    Trudinger, N.S., Wang, X.J.: On the weak continuity of elliptic operators and applications to potential theory. Am. J. Math. 124, 369–410 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Wannebo, A.: Hardy inequalities. Proc. Am. Math. Soc. 109, 85–95 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Stein, E.M.: Singular Integrals and Differentiability of Functions. Princeton Univ. Press, Princeton, NJ (1970)zbMATHGoogle Scholar
  53. 53.
    Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ (1993)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Donatella Danielli
    • 1
  • Nicola Garofalo
    • 1
  • Nguyen Cong Phuc
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations