Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces

  • Donatella Danielli
  • Nicola Garofalo
  • Nguyen Cong Phuc
Part of the International Mathematical Series book series (IMAT, volume 8)

We consider various types of Hardy-Sobolev inequalities on a Carnot-Caratheodory space (Ω, d) associated to a system of smooth vector fields Χ = {Χ 1,Χ 2,…,Χm} on Rn satisfying the Hormander finite rank condition rank Lie[Χ 1,…, Ωm] ≡ n. One of our main concerns is the trace inequality \(\int\limits_\Omega ^{} {|\ell \left( x \right)} |^p V\left( x \right)dx \le C\int\limits_\Omega ^{} {|X\ell |^P dx},\ell \in C_0^\infty \left( \Omega \right),\) where V is a general weight, i.e., a nonnegative locally integrable function on Ω, and 1 < p < +∞. Under sharp geometric assumptions on the domain Ω C Rn that can be measured equivalently in terms of subelliptic capacities or Hausdorff contents, we establish various forms of Hardy-Sobolev type inequalities.


Local Parameter Heisenberg Group Sobolev Inequality Hardy Inequality Carnot Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ancona, A.: On strong barriers and an inequality of Hardy for domains in Rn. J. London Math. Soc. 34., 274–290 (1986)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biroli, M.: Schrödinger type and relaxed Dirichlet problems for the subelliptic p-Laplacian. Potential Anal. 15, 1–16 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Björn, J., MacManus, P., Shanmugalingam, N.: Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces. J. Anal. Math. 85, 339–369 (2001)MATHMathSciNetGoogle Scholar
  4. 4.
    Capogna, L., Danielli, D., Garofalo, N.: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations. Commun. Partial Differ. Equ. 18, no. 9–10, 1765–1794 (1993)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Capogna, L., Danielli, D., Garofalo, N.: Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Am. J. Math. 118, no.6, 1153–1196 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Capogna, L., Danielli, D., Garofalo, N.: Subelliptic mollifiers and a basic pointwise estimate of Poincaré type. Math. Z. 226, 147–154 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Capogna, L., Garofalo, N.: Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics. J. Fourier Anal. Appl. 4, no. 4–5, 403–432 (1998)MATHMathSciNetGoogle Scholar
  8. 8.
    Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)MATHMathSciNetGoogle Scholar
  9. 9.
    Chow, W.L.: Über systeme von linearen partiellen Differentialgleichungen erster Ord-nung. Math. Ann. 117, 98–105 (1939)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ciatti, P., Ricci, F., Sundari, M.: Heisenberg-Pauli-Weyl uncertainty inequalities and polynomial volume growth. Adv. Math. 215, 616–625 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    D'Ambrosio, L.: Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) IV, 451–486 (2005)MathSciNetGoogle Scholar
  12. 12.
    Danielli, D.: Regularity at the boundary for solutions of nonlinear subelliptic equations. Indiana Univ. Math. J. 44, 269–285 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Danielli, D.: A Fefferman-Phong type inequality and applications to quasilinear subel-liptic equations. Potential Anal. 11, 387–413 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Danielli, D., Garofalo, N.: Green Functions in Nonlinear Potential Theory in Carnot Groups and the Geometry of their Level Sets. Preprint (2003)Google Scholar
  15. 15.
    Danielli, D., Garofalo, N., Phuc, N.C.: Hardy-Sobolev Inequalities with Sharp Constants in Carnot-Carath´eodory Spaces. Preprint (2008)Google Scholar
  16. 16.
    Duc, D.M., Phuc, N.C., Nguyen, T.V.: Weighted Sobolev's inequalities for bounded domains and singular elliptic equations. Indiana Univ. Math. J. 56, 615–642 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fefferman, C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Folland, G.B., Stein,E.M.: Hardy Spaces on Homogeneous Groups. Princeton Univ. Press, Princeton, NJ (1982)MATHGoogle Scholar
  19. 19.
    Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79, 373–376 (1973)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207 (1975)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields. Boll. Unione Mat. Ital., VII, Ser. B 11, no. 1, 83–117 (1997)MATHMathSciNetGoogle Scholar
  22. 22.
    Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40, no. 2, 313–356 (1990)MATHMathSciNetGoogle Scholar
  23. 23.
    Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot- Caratheodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Garofalo, N., Nhieu, D.M.: Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces. J. Anal. Math. 74, 67–97 (1998)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hajlasz, P.: Pointwise Hardy inequalities, Proc. Am. Math. Soc. 127, 417–423 (1999)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Hansson, K., Maz’ya, V.G., Verbitsky, I.E.: Criteria of solvability for multidimensional Riccati equations. Ark. Mat. 37, 87–120 (1999)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Hardy, G.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Heinonen, J., Holopainen, I.: Quasiregular maps on Carnot groups. J. Geom. Anal. 7, no. 1, 109–148 (1997)MATHMathSciNetGoogle Scholar
  29. 29.
    Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Heinonen, J., Kilpelainen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, Oxford (1993)MATHGoogle Scholar
  31. 31.
    Hormander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Hunt, R.: On L p,q spaces. Eins. Math. 12, 249–276 (1966)MATHGoogle Scholar
  33. 33.
    Jerison, D.: The Poincaré inequality for vector fields satisfying Hormander's condition. Duke Math. J. 53, 503–523 (1986)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258, 147–153 (1980)MATHCrossRefGoogle Scholar
  35. 35.
    Kilpelainen, T., Maly, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Kombe, I.: Sharp Weighted Hardy Type Inequalities and Uncertainty Principle Inequality on Carnot Groups. Preprint (2005)Google Scholar
  37. 37.
    Lehrbäck, J.: Pointwise Hardy inequalities and uniformly fat sets. Proc. Am. Math. Soc. [To appear]Google Scholar
  38. 38.
    Lewis, J.L.: Uniformly fat sets. Trans. Am. Math. Soc. 308, 177–196 (1988)MATHCrossRefGoogle Scholar
  39. 39.
    Lohoué, N.: Une variante de l’inégalité de Hardy. Manuscr. Math. 123, 73–78 (2007)MATHCrossRefGoogle Scholar
  40. 40.
    Maz'ya, V.G.: The negative spectrum of the n-dimentional Schrödinger operator (Russian). Dokl. Akad. Nauk SSSR 144, 721–722 (1962); English transl.: Sov. Math., Dokl. 3, 808–810 (1962)MathSciNetGoogle Scholar
  41. 41.
    Maz'ya, V.G.: Sobolev Spaces. Springer-Verlag, Berlin-Tokyo (1985)Google Scholar
  42. 42.
    Mikkonen, P.: On the Wolff potential and quasilinear elliptic equations involving measures. Ann. Acad. Sci. Fenn., Ser AI, Math. Dissert. 104 (1996)Google Scholar
  43. 43.
    Monti, R., Morbidelli, D.: Regular domains in homogeneous groups. Trans. Am. Math. Soc. 357, no. 8, 2975–3011 (2005)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: Basics properties. Acta Math. 155, 103–147 (1985)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Niu, P., Zhang, H., Wang, Y.: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 129, no. 12, 3623–3630 (2001)MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Rashevsky, P.K.: Any two points of a totally nonholonomic space may be connected by an admissible line (Russian). Uch. Zap. Ped. Inst. Liebknechta, Ser. Phys. Math. 2, 83–94 (1938)Google Scholar
  47. 47.
    Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta. Math. 137, 247–320 (1976)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Sanchez-Calle, A.: Fundamental solutions and geometry of sum of squares of vector fields. Invent. Math. 78, 143–160 (1984)MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Sobolev, S.L.: On a theorem of functional analysis (Russian). Mat. Sb. 46, 471–497 (1938); English transl.: Am. Math. Soc., Transl., II. Ser. 34, 39–68 (1963)Google Scholar
  50. 50.
    Trudinger, N.S., Wang, X.J.: On the weak continuity of elliptic operators and applications to potential theory. Am. J. Math. 124, 369–410 (2002)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Wannebo, A.: Hardy inequalities. Proc. Am. Math. Soc. 109, 85–95 (1990)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Stein, E.M.: Singular Integrals and Differentiability of Functions. Princeton Univ. Press, Princeton, NJ (1970)MATHGoogle Scholar
  53. 53.
    Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ (1993)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Donatella Danielli
    • 1
  • Nicola Garofalo
    • 1
  • Nguyen Cong Phuc
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations