Bit-Patterned Magnetic Recording: Nanoscale Magnetic Islands for Data Storage

  • Thomas R. Albrecht
  • Olav Hellwing
  • Ricardo Ruiz
  • Manfred E. Schabes
  • Bruce D. Terris
  • Xiao Z. Wu


Bit-patterned recording shows potential as a route to thermally stable data recording at densities greater than 1 Tbit/in2, provided that a number of challenging requirements can be met. Micromagnetic modeling of the write process shows that high write-field gradient (>350 Oe/nm) and tight tolerances on island fabrication and write synchronization (both in the range of ∼1 nm sigma) are required for addressability (the ability to write a given island without detrimentally affecting neighboring islands). Magnetically uniform islands are also required, with tight island switching-field distribution (5−10% of H k ). We show that magnetic multilayer films with perpendicular anisotropy (e.g., Co/Pd multilayers and laminated films of Co/Pd with other materials) are promising candidates for magnetic layer deposition onto pre-patterned substrates. A suitable strategy for patterned media fabrication begins with master pattern generation using electron beam lithography to create chemical contrast guiding patterns for self-assembly; this approach produces higher quality and higher density patterns than e-beam alone. Patterns are replicated over large volumes of disks by UV-cure nanoimprint lithography, followed by etching of the substrate or magnetic layer. Integration of bit-patterned media into a functional recording system requires write synchronization, in which the timing of current switching in the write head is synchronized with the passage of individual islands under the write head. Write synchronization may be implemented using a sector synchronization system, in which the write clock is frequency- and phase-locked to timing bursts read from the disk during periodic interruptions in the writing process.


Block Copolymer Areal Density Magnetic Island Nanoimprint Lithography Switching Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Richter, H.J., Recent advances in the recording physics of thin-film media. Journal of Physics D-Applied Physics, 1999. 32(21): R147–R168.CrossRefGoogle Scholar
  2. 2.
    Moser, A., et al., Magnetic recording: advancing into the future. Journal of Physics D-Applied Physics, 2002. 35(19): R157–R167.CrossRefGoogle Scholar
  3. 3.
    Seagate. in presented at Idema Discon, Sept 2006.Google Scholar
  4. 4.
    Mao, S. from Westen Digital presented at PMRC 2007, Tokyo Japan.Google Scholar
  5. 5.
    Shen, X., et al., Issues in recording exchange coupled composite media. IEEE Transactions on Magnetics, 2007. 43(2): 676–681.CrossRefGoogle Scholar
  6. 6.
    Miles, J.J., et al., Parametric optimization for terabit perpendicular recording. IEEE Transactions on Magnetics, 2003. 39(4Ieee Transactions on Magnetics): 1876–1890.Google Scholar
  7. 7.
    Gao, K.Z. and H.N. Bertraum, Magnetic recording configuration for densities beyond 1 Tb/in(2) and data rates beyond 1 Gb/s. IEEE Transactions on Magnetics, 2002. 38(6): 3675–3683.CrossRefGoogle Scholar
  8. 8.
    Richter, H.J., The transition from longitudinal to perpendicular recording. Journal of Physics D-Applied Physics, 2007. 40(9): R149–R177.CrossRefGoogle Scholar
  9. 9.
    McDaniel, T.W., Ultimate limits to thermally assisted magnetic recording. Journal of Physics-Condensed Matter, 2005. 17(7): R315–R332.CrossRefGoogle Scholar
  10. 10.
    Zhu, J.G., X.C. Zhu, and Y.H. Tang, Microwave assisted magnetic recording. IEEE Transactions on Magnetics, 2008. 44(1): 125–131.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chou, S.Y., P.R. Krauss, and L.S. Kong, Nanolithographically defined magnetic structures and quantum magnetic disk. Journal of Applied Physics, 1996. 79(8): 6101–6106.CrossRefGoogle Scholar
  12. 12.
    New, R.M.H., R.F.W. Pease, and R.L. White, Lithographically patterned single-domain cobalt islands for high-density magnetic recording. Journal of Magnetism and Magnetic Materials, 1996. 155(1–3): 140–145.CrossRefGoogle Scholar
  13. 13.
    Terris, B.D. and T. Thomson, Nanofabricated and Self-Assembled Magnetic Structures as Data Storage Media. Journal of physics D: Applied physics, 2005. 38: R199–222.CrossRefGoogle Scholar
  14. 14.
    Schabes, M.E., Micromagentic Simulations for Tb/in2 recording systems. Journal of Magnetism and Magnetic Materials, 2008. 320(22): 2880–2884.Google Scholar
  15. 15.
    Richter, H.J., et al., Recording on bit-patterned media at densities of 1 Tb/in(2) and beyond. IEEE Transactions on Magnetics, 2006. 42(10): 2255–2260.CrossRefGoogle Scholar
  16. 16.
    Hu, J., et al., Bit-patterned media with written-in errors: Modeling, detection, and theoretical limits. IEEE Transactions on Magnetics, 2007. 43(8): 3517–3524.CrossRefGoogle Scholar
  17. 17.
    Kish, L.B. and P.M. Ajayan, TerraByte flash memory with carbon nanotubes. Applied Physics Letters, 2005. 86: 093106.CrossRefGoogle Scholar
  18. 18.
    Albrecht, M., et al., Magnetic dot arrays with multiple storage layers. Journal of Applied Physics, 2005. 97(10): 103910.Google Scholar
  19. 19.
    Baltz, V., et al., Multilevel magnetic media in continuous and patterned films with out-of-plane magnetization. Journal of Magnetism and Magnetic Materials, 2005. 290: 1286–1289.CrossRefGoogle Scholar
  20. 20.
    Bertram, H.N. and M. Williams, SNR and density limit estimates: A comparison of longitudinal and perpendicular recording. IEEE Transactions on Magnetics, 2000. 36(1): 4–9.CrossRefGoogle Scholar
  21. 21.
    Weller, D., et al., High K-u materials approach to 100 Gbits/in(2). IEEE Transactions on Magnetics, 2000. 36(1): 10–15.CrossRefGoogle Scholar
  22. 22.
    Klemmer, T.J., et al., Structural studies of L1(0) FePt nanoparticles. Applied Physics Letters, 2002. 81(12): 2220–2222.CrossRefGoogle Scholar
  23. 23.
    Suess, D., Multilayer exchange spring media for magnetic recording. Applied Physics Letters, 2006. 89(18): 113105; 189901.CrossRefGoogle Scholar
  24. 24.
    Albrecht, M., et al., Writing of high-density patterned perpendicular media with a conventional longitudinal recording head. Applied Physics Letters, 2002. 80(18): 3409–3411.CrossRefGoogle Scholar
  25. 25.
    Schabes, M.E. The write process and thermal stability in bit patterned recording media. in 10th Joint MMM/Intermag Conference. 2007. Baltimore, MD.Google Scholar
  26. 26.
    Schrefl, T. 2007, Private communication.Google Scholar
  27. 27.
    Ise, K., et al., New shielded single-pole head with planar structure. IEEE Transactions on Magnetics, 2006. 42(10): 2422–2424.CrossRefGoogle Scholar
  28. 28.
    McDaniel, T.W., W.A. Challener, and K. Sendur, Issues in heat-assisted perpendicular recording. IEEE Transactions on Magnetics, 2003. 39(4): 1972–1979.CrossRefGoogle Scholar
  29. 29.
    Nembach, H.T., et al., Microwave assisted switching in a Ni81Fe19 ellipsoid. Applied Physics Letters, 2007. 90(6): 062503.Google Scholar
  30. 30.
    Richter, H.J., et al., Recording potential of bit-patterned media. Applied Physics Letters, 2006. 88: 222512.CrossRefGoogle Scholar
  31. 31.
    Moritz, J., et al., Magnetization dynamics and thermal stability in patterned media. Applied Physics Letters, 2005. 86(6): 063512.CrossRefGoogle Scholar
  32. 32.
    Rettner, C.T., et al., Magnetic characterization and recording properties of patterned Co 70 Cr 18Pt12 perpendicular media. IEEE Transactions on Magnetics, 2002. 38(4): 1725–1730.CrossRefGoogle Scholar
  33. 33.
    Thomson, T., G. Hu, and B.D. Terris, Intrinsic Distribution of Magnetic Anisotropy in Thin Films Probed by Patterned Nanostructures. Physical Review Letters, 2006. 96: 257204.CrossRefGoogle Scholar
  34. 34.
    Hu, G., et al., Magnetization Reversal in Co/Pd Nanostructures and Films. Journal of Applied Physics, 2005. 97: 10J702.CrossRefGoogle Scholar
  35. 35.
    Bardou, N., et al., Light-Diffraction Effects in the Magnetooptical Properties of 2d Arrays of Magnetic Dots of Au/Co/Au(111) Films with Perpendicular Magnetic-Anisotropy. Journal of Magnetism and Magnetic Materials, 1995. 148(1–2): 293–294.CrossRefGoogle Scholar
  36. 36.
    Hellwig, O., et al., Separating dipolar broadening from the intrinsic switching field distribution in perpendicular patterned media. Applied Physics Letters, 2007. 90: 162516.CrossRefGoogle Scholar
  37. 37.
    Shaw, J.M., et al., Origins of switching field distributions in perpendicular magnetic nanodot arrays. Journal of Applied Physics., 2007. 101: 023909.CrossRefGoogle Scholar
  38. 38.
    Tagawa, I. and Y. Nakamura, Relationship between High-Density Recording Performance and Particle Coercivity Distribution. IEEE Transactions on Magnetics, 1991. 27(6): 4975–4977.CrossRefGoogle Scholar
  39. 39.
    Berger, A., B. Lengsfield, and Y. Ikeda, Determination of intrinsic switching field distributions in perpendicular recording media (invited). Journal of Applied Physics, 2006. 99(8): 08E705.CrossRefGoogle Scholar
  40. 40.
    Berger, A., et al., Delta H(M, Delta M) method for the determination of intrinsic switching field distributions in perpendicular media. IEEE Transactions on Magnetics, 2005. 41(10): 3178–3180.CrossRefGoogle Scholar
  41. 41.
    Ruiz, R., et al., Density multiplication and improved lithography by directed black copolymer assembly, Science, 2008. 321(5891): p. 936–939.Google Scholar
  42. 42.
    Suess, D., Micromagnetics of exchange spring media: Optimization and limits. Journal of Magnetism and Magnetic Materials, 2007. 308(2): 183–197.CrossRefGoogle Scholar
  43. 43.
    Suess, D., et al., Optimization of exchange spring perpendicular recording media. IEEE Transactions on Magnetics, 2005. 41(10): 3166–3168.CrossRefGoogle Scholar
  44. 44.
    Moser, A., et al., Off-track margin in bit patterned media. Applied Physics Letters, 2007. 91: 162502.CrossRefGoogle Scholar
  45. 45.
    Hellwig, O., et al., Suppression of magnetic trench material in bit patterned media fabricated by blanket deposition onto pre-patterned substrates, Applied Physics Letters, 2008. 93: 192501.Google Scholar
  46. 46.
    International Technology Roadmap for Semiconductors (ITRS), 2007.
  47. 47.
    ZEP520A electron beam resist, Zeon Chemicals, L.P. Google Scholar
  48. 48.
    Yasin, S., D.G. Hasko, and H. Ahmed, Fabrication of < 5 nm width lines in poly (methylmethacrylate) resist using a water : isopropyl alcohol developer and ultrasonically-assisted development. Applied Physics Letters, 2001. 78(18): 2760–2762.CrossRefGoogle Scholar
  49. 49.
    Tiberio, R., private communication.Google Scholar
  50. 50.
    Yang, X., et al., Challenges in 1 Teradot/ in.2 dot patterning using electron beam lithography for bit-patterned media. The Journal of Vacuum Science and Technology, 2007. 25(6): 2202–2209.CrossRefGoogle Scholar
  51. 51.
    Colburn, M., et al., Step and flash imprint lithography: a new approach to high resolution patterning. Proceedings of SPIE, 1999. 3676: 379.Google Scholar
  52. 52.
    Lentz, D., et al., Whole wafer imprint patterning using step and flash imprint lithography: a manufacturing solution for sub-100-nm patterning. Proceedings of SPIE, 2007. 6517: 65172F.Google Scholar
  53. 53.
    Morkved, T.L., et al., Mesoscopic self-assembly of gold islands an diblock-copolymer films. Applied Physics Letters, 1994. 64(4): 422–424.CrossRefGoogle Scholar
  54. 54.
    Mansky, P., P. Chaikin, and E.L. Thomas, Monolayer films of diblock copolymer microdomains for nanolithographic applications. Journal of Materials Science, 1995. 30(8): 1987–1992.CrossRefGoogle Scholar
  55. 55.
    Park, M., et al., Block Copolymer Lithography: Periodic Arrays of ∼1011 Holes in 1?Square Centimeter. Science, 1997. 276(5317): 1401–1404.CrossRefGoogle Scholar
  56. 56.
    Bates, F.S. and G.H. Fredrickson, Block Copolymer Thermodynamics: Theory and Experiment. Annual Review of Physical Chemistry, 1990. 41(1): 525–557.CrossRefGoogle Scholar
  57. 57.
    Thurn-Albrecht, T., et al., Nanoscopic templates from oriented block copolymer films. Advanced Materials, 2000. 12(11): 787–791.CrossRefGoogle Scholar
  58. 58.
    Asakawa, K. and T. Hiraoka, Nanopatterning with microdomains of block copolymers using reactive-ion etching selectivity. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002. 41(10): 6112–6118.CrossRefGoogle Scholar
  59. 59.
    Guarini, K.W., et al., Nanoscale patterning using self-assembled polymers for semiconductor applications. Journal of Vacuum Science & Technology B, 2001. 19(6): 2784–2788.CrossRefGoogle Scholar
  60. 60.
    Cheng, J.Y., et al., Magnetic properties of large-area particle arrays fabricated using block copolymer lithography. IEEE Transactions on Magnetics, 2002. 38(5): 2541–2543.CrossRefGoogle Scholar
  61. 61.
    Naito, K., et al., 2.5-inch disk patterned media prepared by an artificially assisted self-assembling method. IEEE Transactions on Magnetics, 2002. 38(5): 1949–1951.CrossRefGoogle Scholar
  62. 62.
    Park, S.-M., et al., Directed Assembly of Lamellae-Forming Block Copolymers by Using Chemically and Topographically Patterned Substrates. Advanced Materials, 2007. 19(4): 607–611.CrossRefGoogle Scholar
  63. 63.
    Black, C.T., et al., Polymer self assembly in semiconductor microelectronics. IBM Journal of Research and Development, 2007. 51(5): 605–633.CrossRefGoogle Scholar
  64. 64.
    Segalman, R.A., Patterning with block copolymer thin films. Materials Science & Engineering R-Reports, 2005. 48(6): 191–226.CrossRefGoogle Scholar
  65. 65.
    Lazzari, M. and M.A. Lopez-Quintela, Block copolymers as a tool for nanomaterial fabrication. Advanced Materials, 2003. 15(19): 1583–1594.CrossRefGoogle Scholar
  66. 66.
    Hamley, I.W., The physics of block copolymers. 1998, Oxford, New York, Oxford University Press. viii, 424 pp.Google Scholar
  67. 67.
    Hamley, I.W., Nanostructure fabrication using block copolymers. Nanotechnology, 2003. 14(10): R39–R54.CrossRefGoogle Scholar
  68. 68.
    Edwards, E.W., et al., Precise control over molecular dimensions of block-copolymer domains using the interfacial energy of chemically nanopatterned substrates. Advanced Materials, 2004. 16(15): 1315.CrossRefGoogle Scholar
  69. 69.
    Edwards, E.W., et al., Dimensions and shapes of block copolymer domains assembled on lithographically defined chemically patterned substrates. Macromolecules, 2007. 40(1): 90–96.CrossRefGoogle Scholar
  70. 70.
    Cheng, J.Y., A.M. Mayes, and C.A. Ross, Nanostructure engineering by templated self-assembly of block copolymers. Nature Materials, 2004. 3(11): 823–828.CrossRefGoogle Scholar
  71. 71.
    Turner, M.S., Equilibrium Properties Of A Diblock Copolymer Lamellar Phase Confined Between Flat Plates. Physical Review Letters, 1992. 69(12): 1788–1791.CrossRefGoogle Scholar
  72. 72.
    Walton, D.G., et al., A Free-Energy Model For Confined Diblock Copolymers. Macromolecules, 1994. 27(21): 6225–6228.CrossRefGoogle Scholar
  73. 73.
    Helfand, E. and Y. Tagami, Theory of the Interface Between Immiscible Polymers. The Journal of Chemical Physics, 1972. 57(4): 1812–1813.CrossRefGoogle Scholar
  74. 74.
    Semenov, A.N., Contribution to the theory of microphase layering in block-copolymer melts. Soviet Physics – JETP, 1985. 61(4): 733.Google Scholar
  75. 75.
    Leibler, L., Theory of Microphase Separation in Block Copolymers. Macromolecules, 1980. 13(6): 1602–1617.CrossRefGoogle Scholar
  76. 76.
    Black, C.T. and O. Bezencenet, Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly. IEEE Transactions On Nanotechnology, 2004. 3(3): 412–415.CrossRefGoogle Scholar
  77. 77.
    Segalman, R.A., A. Hexemer, and E.J. Kramer, Edge Effects on the Order and Freezing of a 2D Array of Block Copolymer Spheres. Physical Review Letters, 2003. 91(19): 196101.CrossRefGoogle Scholar
  78. 78.
    Rockford, L., et al., Polymers on Nanoperiodic, Heterogeneous Surfaces. Physical Review Letters, 1999. 82(12): 2602.CrossRefGoogle Scholar
  79. 79.
    Kim, S.O., et al., Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 2003. 424(6947): 411–414.CrossRefGoogle Scholar
  80. 80.
    Morkved, T.L., et al., Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields. Science, 1996. 273(5277): 931–933.CrossRefGoogle Scholar
  81. 81.
    Angelescu, D.E., et al., Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Advanced Materials, 2004. 16(19): 1736.CrossRefGoogle Scholar
  82. 82.
    Rettner, C.T. and B.D. Terris US Patent 6,754,017 Patterned media magnetic recording disk drive with timing of write pulses by sensing the patterned media Google Scholar
  83. 83.
    Albrecht, T.R. and Z.Z. Bandic US Patent 7,236,325 Method for formatting a magnetic recording disk with patterned nondata islands of alternating polarity Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thomas R. Albrecht
    • 1
  • Olav Hellwing
    • 1
  • Ricardo Ruiz
    • 1
  • Manfred E. Schabes
    • 1
  • Bruce D. Terris
    • 1
  • Xiao Z. Wu
    • 1
  1. 1.Hitachi Global Storage TechnologiesSan Jose Research CenterSan JoseUSA

Personalised recommendations