Magnetic Nanowires for Domain Wall Logic and Ultrahigh Density Data Storage

  • R.P. Cowburn


Spintronics describes the concept of attempting to use both the charge and the spin on the electron in microelectronic devices [1, 2]. One of the most highly sought after functionalities in microelectronics is non-volatility, i.e. the ability to retain memory even when power is removed. This is particularly true as the popularity of mobile electronic communication and computing devices grows. In principle, ferromagnetic materials could provide this functionality, due to the hysteresis, and hence memory, that accompanies most ferromagnets. Unfortunately, no suitable room temperature ferromagnetic semiconductor material has yet been identified [3]; the most common ferromagnetic materials are metals. The aim of this research has been to see how far we can push the properties of basic ferromagnetic metallic alloys, which are usually considered to have relatively simple magnetic and electrical properties, towards highly functional devices which mimic and complement the digital logic functions and non-volatile data storage functions of semiconductor microelectronics. Using the concept of the domain wall conduit, we show how information can be represented, moved, processed and stored in networks of ferromagnetic nanowires.


Domain Wall Shift Register Electron Beam Lithography Magnetization Direction Ring Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter draws heavily on work performed by current and past researchers in my research team: Dan Allwood, Dorothee Petit, Dan Read, Emma Lewis, Del Atkinson, Gang Xiong, Colm Faulker and Vanessa Jausovec. I express my thanks to allof them.


  1. 1.
    G.A. Prinz, Science 282, 1660 (1998)CrossRefGoogle Scholar
  2. 2.
    S.A. Wolf et al., Science 294, 1488 (2001)CrossRefGoogle Scholar
  3. 3.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)CrossRefGoogle Scholar
  4. 4.
    G. Xiong, D.A. Allwood, M.D. Cooke, R.P. Cowburn, Appl. Phys. Lett. 79, 3461–3463 (2001)CrossRefGoogle Scholar
  5. 5.
    R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, M.E. Welland, Appl. Phys. Lett. 73, 3947–3949 (1998)CrossRefGoogle Scholar
  6. 6.
    A. Hubert, R. Schaeffer, Magnetic Domains: The Analysis of Magnetic Microstructures. Springer Verlag New York (1998) ISBN 3-540-64108-4Google Scholar
  7. 7.
    L. Berger, J. Appl. Phys. 55, 1954–1956 (1984)CrossRefGoogle Scholar
  8. 8.
    N. Vernier, D.A. Allwood, D. Atkinson, M.D. Cooke, R.P. Cowburn, Europhys. Lett. 65, 526 (2004)CrossRefGoogle Scholar
  9. 9.
    C.K. Lim, T. Devolder, C. Chappert, J. Grollier, V. Cros, A. Vaurès, A. Fert, G. Faini, Appl. Phys. Lett. 84, 2820 (2004)CrossRefGoogle Scholar
  10. 10.
    A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)CrossRefGoogle Scholar
  11. 11.
    D.A. Allwood, G. Xiong, M.D. Cooke, C.C. Faulkner, D. Atkinson, N. Vernier, R.P. Cowburn, Science 296, 2003–2006 (2002)CrossRefGoogle Scholar
  12. 12.
    X. Zhu, D.A. Allwood, G. Xiong, R.P. Cowburn, P. Grutter, Appl. Phys. Lett. 87, 062503 (2005)CrossRefGoogle Scholar
  13. 13.
    D.A. Allwood et al., Science 309, 1688 (2005)CrossRefGoogle Scholar
  14. 14.
    B.N. Engel, J. Akerman, B. Butcher, R.W. Dave, M. DeHerrera, M. Durlam, G. Grynkewich, J. Janesky, S.V. Pietambaram, N.D. Rizzo, J.M. Slaughter, K. Smith, J.J. Sun, S. Tehrani, Magn. IEEE Trans. 41, 132–136 (2005)Google Scholar
  15. 15.
    J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273–3276 (1995)CrossRefGoogle Scholar
  16. 16.
    R.P. Cowburn, UK Patent GB2430318.Google Scholar
  17. 17.
    R.D. McMichael, M.J. Donahue, IEEE Trans. Mag. 33, 4167 (1997)CrossRefGoogle Scholar
  18. 18.
    N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)CrossRefGoogle Scholar
  19. 19.
    Y. Nakatani, A. Thiaville, J. Miltat, Nat. Mater. 2, 521 (2003)CrossRefGoogle Scholar
  20. 20.
    R. Waser, Ed., Nanoelectronics and Information Technology. Wiley VCH, Weinheim p. 330 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Blackett Physics LaboratoryImperial College LondonLondonUK

Personalised recommendations