Tunable Exchange Bias Effects

  • Ch. Binek


Extrinsic control mechanisms of the interface magnetization in exchange bias heterostructures are reviewed. Experimental progress in the realization of adjustable exchange bias is discussed with special emphasis on electrically tunable exchange bias fields in magnetic thin film heterostructures. Current experimental attempts and concepts of electrically controlled exchange bias exploit magnetic bilayer structures where a ferromagnetic top electrode is in close proximity of magnetoelectric antiferromagnets, multiferroic pinning layers, or piezoelectric thin films. Various experimental approaches are introduced and the potential use of electrically controlled exchange bias in spintronic applications is briefly outlined. In addition, isothermal magnetic field tuning of exchange bias fields and extrinsically tailored exchange bias training effects are reported. The latter have been studied in a variety of systems ranging from conventional antiferromagnetic/ferromagnetic bilayers and core–shell nanoparticles to all ferromagnetic heterostructures where soft and hard ferromagnetic thin films are exchange coupled across a non-magnetic spacer. Such ferromagnetic bilayers show remarkable analogies to conventional exchange bias systems. At the same time they have the experimental advantage to provide direct access to the magnetic state of the pinning layer by simple magnetometry. A large number of exchange-coupled magnetic systems with qualitative differences in materials composition and coupling share a common physical principle that gives rise to training or aging phenomena in a unifying framework. Deviations from the equilibrium spin configuration of the pinning layer generate a force that drives the system back toward equilibrium. The initial nonequilibrium states can be tuned by temperature and applied set fields providing control over various characteristics of the training effect ranging from enhancement to complete quenching.


Training Effect Exchange Bias Magnetoelectric Effect Magnetic Field Axis Zeeman Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter is supported in part by NSF through Career DMR-0547887, MRSEC DMR-0213808, NCMN, and NRI. The author gratefully acknowledges discussions with Sarbeswar Sahoo, Srinivas Polisetty, Xi He, Yi Wang, and Tathagata Mukherjee.


  1. 1.
    Th. Mühge, N. N. Garif’yanov, Yu. V. Goryunov, G. G. Khaliullin, L. R. Tagirov, K. Westerholt, I. A. Garifullin, and H. Zabel, “Possible Origin for Oscillatory Superconducting Transition Temperature in Superconductor/Ferromagnet Multilayers” Phys. Rev. Lett. 77, 1857 (1996).CrossRefGoogle Scholar
  2. 2.
    Chun-Gang Duan, S. S. Jaswal, and E. Y. Tsymbal, “Predicted Magnetoelectric Effect in Fe/BaTiO 3 Multilayers: Ferroelectric Control of Magnetism” Phys. Rev. Lett. 97, 047201 (2006).CrossRefGoogle Scholar
  3. 3.
    Ch. Binek, S. Polisetty, Xi He, and A. Berger, “Exchange Bias Training Effect in Coupled All Ferromagnetic Bilayer Structures” Phys. Rev. Lett. 96, 067201 (2006).CrossRefGoogle Scholar
  4. 4.
    I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications” Rev. Mod. Phys. 76, 323 (2004).CrossRefGoogle Scholar
  5. 5.
    G. E. Moore, “Cramming more components onto integrated circuits” Electronics 38, 114 (1965).Google Scholar
  6. 6.
    W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy” Phys. Rev. 102, 1413 (1956).CrossRefGoogle Scholar
  7. 7.
    W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy” Phys. Rev. 105, 904 (1957).CrossRefGoogle Scholar
  8. 8.
    J. Nogués and I.K. Schuller, “Exchange bias” J. Magn. Magn. Mater. 192, 203 (1999).CrossRefGoogle Scholar
  9. 9.
    A. Berkowitz and K. Takano, “Exchange anisotropy- a review” J. Magn. Magn. Mater. 200, 552 (1999).CrossRefGoogle Scholar
  10. 10.
    R. L. Stamps, “Mechanisms for exchange bias”, J. Phys. D 33, R247 (2000).CrossRefGoogle Scholar
  11. 11.
    M. Kiwi, “Exchange bias theory”, J. Magn. Magn. Mater. 234, 584 (2001).CrossRefGoogle Scholar
  12. 12.
    M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hichey, and R. L. Stamps, “Exchange bias using a spin glass” Nat. Mater. 6, 70 (2007).CrossRefGoogle Scholar
  13. 13.
    I. Roshchin, O. Petracic, R. Morales, Z.-P. Li, X. Batlle, and I. K. Schuller, “Lateral length scales in exchange bias” Europhys. Lett. 71, 297 (2005).CrossRefGoogle Scholar
  14. 14.
    F. Radu and H. Zabel, “Exchange bias effect of ferro-/antiferromagnetic heterostructures” Springer Tracts Modern Phys., 227 (2008).Google Scholar
  15. 15.
    W. Kuch, L. I. Chelaru, F. Offi, J. Wang, M. Kotsugi, and J. Kirschner, “Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness” Nat. Mater. 5, 128 (2006).CrossRefGoogle Scholar
  16. 16.
    J. S. Jiang, G. P. Felcher, A. Inomata, R. Goyette, C. S. Nelson, and S. D. Bader, “Exchange bias in Fe/Cr double superlattices” J. Vac. Sci Technol. A 18, 1264 (2000).CrossRefGoogle Scholar
  17. 17.
    F. Nolting, A. Scholl, J. Stöhr, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. L üing, E. E. Fullerton, M. F. Toney, M. R. Scheinfein, and H. A. Padmore, “ Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins” Nature 405, 767 (2000).CrossRefGoogle Scholar
  18. 18.
    Ch. Binek, A. Hochstrat, and W. Kleemann, “Exchange Bias in a generalized Meiklejohn-Bean approach” J. Magn. Magn. Mater. 234, 353 (2001).CrossRefGoogle Scholar
  19. 19.
    C. Leighton, J. Nogués, B. J. Jönsson-kerman, and I.K. Schuller, “Coercivity Enhancement in Exchange Biased Systems Driven by Interfacial Magnetic Frustration” Phys. Rev. Lett 84, 3466 (2000).CrossRefGoogle Scholar
  20. 20.
    S. Maat, K. Takano, S. S. P. Parkin, and E. E. Fullerton, “Perpendicular Exchange Bias of Co/Pt Multilayers” Phys. Rev. Lett 87, 087202 (2001).CrossRefGoogle Scholar
  21. 21.
    G. Scholten, K. D. Usadel, and U. Nowak, “Coercivity and exchange bias of ferromagnetic/antiferromagnetic multilayers” Phys. Rev. B 71, 064413 (2005).CrossRefGoogle Scholar
  22. 22.
    D. Paccard, C. Schlenker, O. Massenet, R. Montmory, and A. Yelon, “A New Property of Ferromagnetic-Antiferromagnetic Coupling” Phys. Status Solidi 16, 301 (1966).CrossRefGoogle Scholar
  23. 23.
    C. Schlenker, S. S. P. Parkin, J. C. Scott, and K. Howard, “Magnetic disorder in the exchange bias bilayered FeNi-FeMn system” J. Magn. Magn. Mater. 54, 801 (1986).CrossRefGoogle Scholar
  24. 24.
    K. Zhang, T. Zhao, and M. Fujiwara, “Training effect of exchange biased iron–oxide/ferromagnet systems”, J. Appl. Phys. 89, 6910 (2001).CrossRefGoogle Scholar
  25. 25.
    S. G. te Velthuis, A. Berger, G. P. Felcher, B. Hill, and E. Dahlberg, J. Appl. Phys. 87, 5046 (2000).CrossRefGoogle Scholar
  26. 26.
    Heiwan Xi, R. M. White, S. Mao, Z. Gao, Z. Yang, and E. Murdock, “Low-frequency dynamic hysteresis in exchange-coupled Ni81Fe19/Ir22Mn78 bilayers” Phys. Rev. B 64, 184416 (2001).CrossRefGoogle Scholar
  27. 27.
    Ch. Binek, “Training of the exchange-bias effect: A simple analytic approach” Phys. Rev. B 70, 014421 (2004).CrossRefGoogle Scholar
  28. 28.
    Ch. Binek, Xi He and S. Polisetty, “Temperature dependence of the training effect in a Co/CoO exchange-bias layer” Phys. Rev. B 72, 054408 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Sahoo, S. Polisetty, Ch. Binek, and A. Berger, ” Dynamic enhancement of the exchange bias training effect” J. Appl. Phys. 101, 053902 (2007).CrossRefGoogle Scholar
  30. 30.
    S. Polisetty, S. Sahoo, and Ch. Binek, “Scaling Behavior of the Exchange-Bias Training Effect” Phys. Rev. B. 76, 184423 (2007).CrossRefGoogle Scholar
  31. 31.
    Haiwen Xi, S. Franzen, S. Mao, and R. M. White, “Exchange bias relaxation in reverse magnetic fields” Phys. Rev. B 75, 014434 (2007).CrossRefGoogle Scholar
  32. 32.
    A. Hoffmann, “Symmetry Driven Irreversibilities at Ferromagnetic-Antiferromagnetic Interfaces” Phys. Rev. Lett. 93, 097203 (2004).CrossRefGoogle Scholar
  33. 33.
    V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogués, “Beating the superparamagnetic limit with exchange bias” Nature (London) 423, 850 (2003).CrossRefGoogle Scholar
  34. 34.
    A. Hochstrat, Ch. Binek, and W. Kleemann, “Training of the exchange-bias effect in NiO-Fe heterostructures” Phys. Rev. B 66, 092409 (2002).CrossRefGoogle Scholar
  35. 35.
    Yan-kun Tang, Young Sun, and Zhao-hua Cheng, “Exchange bias associated with phase separation in the perovskite cobaltite La1−xSrxCoO3 ” Phys. Rev. B 73, 174419 (2006).CrossRefGoogle Scholar
  36. 36.
    D. Niebieskikwiat, and M. B. Salamon, “Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite” Phys. Rev. B 72, 174422 (2005).CrossRefGoogle Scholar
  37. 37.
    R. Ang, Y. P. Sun, X. Luo, C. Y. Hao, X. B. Zhu, and W. H. Song, “The evidence of the glassy behavior in the layered cobaltites” Appl. Phys. Lett. 92, 162508 (2008).CrossRefGoogle Scholar
  38. 38.
    S. Karmakar, S. Taran, E. Bose, and B. K. Chaudhuri, C. P. Sun, C. L. Huang, and H. D. Yang, “Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites (L=Y, Y0.5Sm0.5, and Y0.5La0.5)” Phys. Rev. B 77, 144409 (2008).CrossRefGoogle Scholar
  39. 39.
    J. Ventura, J. P. Araujo, J. B. Sousa, A. Veloso, and P. P. Freitas, “Training effect in specular spin valves” Phys. Rev. B 77, 184404 (2008).CrossRefGoogle Scholar
  40. 40.
    W. Eerenstein, N. D. Mathur, J. F. Scott, “Multiferroic and magnetoelectric materials” Nature 442 759 (2006).CrossRefGoogle Scholar
  41. 41.
    N.A. Hill, “Why are there so few magnetic ferroelectrics?” J. Phys. Chem. B 140, 6694 (2000).CrossRefGoogle Scholar
  42. 42.
    P. Borisov, A. Hochstrat, Xi Chen, W. Kleemann, and Ch. Binek, “Magnetoelectric Switching of Exchange Bias” Phys. Rev. Lett. 94, 117203 (2005).CrossRefGoogle Scholar
  43. 43.
    Ch. Binek, P. Borisov, X. Chen, A. Hochstrat, S. Sahoo, and W. Kleemann, “Perpendicular exchange bias and its control by magnetic, stress and electric fields” Eur. Phys. J. B 45, 197 (2005).CrossRefGoogle Scholar
  44. 44.
    A. Hochstrat, Ch.Binek, Xi Chen, W.Kleemann, “Extrinsic control of the exchange bias” J. Magn. Magn. Mater. 272, 325 (2004).CrossRefGoogle Scholar
  45. 45.
    Ch. Binek, B. Doudin, “Magnetoelectronics with magnetoelectrics” J. Phys. Condens. Matter 17, L39 (2005).CrossRefGoogle Scholar
  46. 46.
    Ch. Binek, A. Hochstrat, X. Chen, P. Borisov, W. Kleemann, and B. Doudin, “Electrically controlled exchange bias for spintronic applications” J. Appl. Phys. 97, 10C514 (2005).CrossRefGoogle Scholar
  47. 47.
    P. Curie, J. de Physique, “Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique3, 393 (1894).Google Scholar
  48. 48.
    I. E. Dzyaloshinskii, “On the magneto-electric effect in antiferromagnets” Sov. Phys. JETP 10 628 (1960).Google Scholar
  49. 49.
    W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott and N. D. Mathur, “Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures” Nat. Mater. 6, 348 (2007).CrossRefGoogle Scholar
  50. 50.
    S. Alexander and S. Shtrikman, “On the origin of the axial magnetoelectric effect of Cr2O3” Solid State Commun. 4, 115 (1966).CrossRefGoogle Scholar
  51. 51.
    R. Hornreich and S. Shtrikman, “Statistical Mechanics and Origin of the Magnetoelectric Effect in Cr2O3” Phys. Rev. 161, 506–512 (1967).CrossRefGoogle Scholar
  52. 52.
    V. Laukhin, V. Skumryev, X. Martí, D. Hrabovsky, F. Sánchez, M.V. García-Cuenca, C. Ferrater, M. Varela, U. Lüders, J. F. Bobo, and J. Fontcuberta, “Electric-Field Control of Exchange Bias in Multiferroic Epitaxial Heterostructures” Phys. Rev. Lett. 97 227201 (2006).CrossRefGoogle Scholar
  53. 53.
    Y.H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. HE, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodrigues, A. Scholl, S. X. Wang and R. Ramesh, “Electric-field control of local ferromagnetism using a magnetoelectric multiferroic” Nat. Mater. 7, 478 (2008).CrossRefGoogle Scholar
  54. 54.
    P. Borisov, Th. Eimüller, A. Fraile-Rodriguéz, A. Hochstrat, X. Chen, W. Kleemann, “Application of the magnetoelectric effect to exchange bias” J. Magn. Magn. Mater. 310, 2313 (2007).CrossRefGoogle Scholar
  55. 55.
    H. Béa, M. Bibes, and S. Cherifi, “Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO 3 epitaxial thin films” Appl. Phys. Lett. 89, 242114 (2006).CrossRefGoogle Scholar
  56. 56.
    P. Borisov, A. Hochstrat, X. Chen, and W. Kleemann, “Multiferroically composed exchange bias systems” Phase Trans. 79, 1123 (2006).CrossRefGoogle Scholar
  57. 57.
    M. Bibes, and A. Barthélémy “Towards a magnetoelectric memory” Nat. mater. 7, 425 (2008).CrossRefGoogle Scholar
  58. 58.
    S. Sahoo and Ch. Binek, “Piezomagnetism in epitaxial Cr 2O3 thin films and spintronic applications” Phil. Mag. Lett. 87, 259 (2007).CrossRefGoogle Scholar
  59. 59.
    M. Fiebig, “Revival of the magnetoelectric effect” J. Phys. D: Appl. Phys. 38, R123 (2005).CrossRefGoogle Scholar
  60. 60.
    P. Borisov, A. Hochstrat, V. V. Shvartsman, W. Kleemann, “Superconducting quantum interference device setup for magnetoelectric measurements” Rev. Sci. Instr. 78, 106105 (2007).CrossRefGoogle Scholar
  61. 61.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization”, Nature 426, 55 (2003).CrossRefGoogle Scholar
  62. 62.
    N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields” Nature 429, 392 (2004).CrossRefGoogle Scholar
  63. 63.
    M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcubert, A. Barthélémy, and A. Fert, “Tunnel junctions with multiferroic barriers” Nat. Mater. 6, 296 (2007).CrossRefGoogle Scholar
  64. 64.
    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, “Magnetocapacitance effect in multiferroic BiMnO 3” Phys. Rev. B 67 180401(R) (2003).Google Scholar
  65. 65.
    T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, “Magnetic phase control by an electric field ” Nature 430, 541 (2004).CrossRefGoogle Scholar
  66. 66.
    J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl, “Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr 2S4” Nature 434, 364 (2005).CrossRefGoogle Scholar
  67. 67.
    Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, “Magnetic Reversal of the Ferroelectric Polarization in a Multiferroic Spinel Oxide” Phys. Rev. Lett. 96, 207204 (2006).CrossRefGoogle Scholar
  68. 68.
    C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca)” Phys. Rev. B 75, 054408 (2007).CrossRefGoogle Scholar
  69. 69.
    T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, “Electrical control of antiferromagnetic domains in multiferroic BiFeO 3 films at room temperature” Nat. Mater. 5, 823 (2006).CrossRefGoogle Scholar
  70. 70.
    A. P. Malozemoff, “Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces” Phys. Rev. B 35, 3679 (1987).CrossRefGoogle Scholar
  71. 71.
    P. Miltényi, M. Gierlings, J. Keller, B. Beschoten, G. Güntherodt, U. Nowak, K. D. Usadel, “Diluted Antiferromagnets in Exchange Bias: Proof of the Domain State Model ” Phys. Rev. Lett. 84, 4224 (2000).CrossRefGoogle Scholar
  72. 72.
    A. S. Borovik-Romanov, “Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese” Sov. Phys. JETP 11(1960) 786.Google Scholar
  73. 73.
    I. E. Dzialoshinskii, “The problem of piezomagnetism” JETP 33 807 (1957).Google Scholar
  74. 74.
    J. Kushauer, C. Binek, and W. Kleemann, J. Appl. Phys. 75 5856 (1994).CrossRefGoogle Scholar
  75. 75.
    Ch. Binek, “Ising-type antiferromagnets: Model systems in statistical physics and the magnetism of exchange bias” Springer Tracts Modern Phys. 196, (Springer, Berlin, 2003).Google Scholar
  76. 76.
    J. Nogués, T. J. Moran, D. Lederman, I. K. Schuller, and K. V. Rao, “Role of interfacial structure on exchange-biased FeF 2-Fe” Phys. Rev. B 59, 6984 (1999).CrossRefGoogle Scholar
  77. 77.
    A. Hochstrat, Ch. Binek, and W. Kleemann, “Training of the exchange-bias effect in NiO-Fe heterostructures” Phys. Rev. B 66, 092409 (2002).CrossRefGoogle Scholar
  78. 78.
    Ch. Binek, Xi Chen, A. Hochstrat, and W. Kleemann, “Exchange bias in Fe 0.6 Zn 0.4 F 2 /Fe heterostructures” J. Magn. Magn. Mater. 240, 257 (2002).CrossRefGoogle Scholar
  79. 79.
    M. K. Lee, T. K. Nath, C. B. Eom, M. C. Smoak, and F. Tsui, “Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO 3 substrate” Appl. Phys. Lett. 77, 3547 (2000).CrossRefGoogle Scholar
  80. 80.
    X. Qi, H. Kim, and M. G. Blamire, “Exchange bias in bilayers based on the ferroelectric antiferromagnet BiFeO 3” Phil. Mag. Lett. 87, 175 (2007).CrossRefGoogle Scholar
  81. 81.
    J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO 3 Multiferroic Thin Film Heterostructures” Science 299, 1719 (2003).CrossRefGoogle Scholar
  82. 82.
    H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Sinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, “Multiferroic BaTiO 3 -CoFe 2 O 4” Nanostructures Science 303, 661 (2004).Google Scholar
  83. 83.
    F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. G. Schlom, Y. Suzuki, and R. Ramesh, “Electric field-induced magnetization switching in epitaxial columnar nanostructures” Nano Lett. 5, 1793 (2005).CrossRefGoogle Scholar
  84. 84.
    G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Yu. I. Bokhan, and V. M. Laletin, “Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides” Phys. Rev. B 64, 214408 (2001).Google Scholar
  85. 85.
    C.W. Nana, “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases” Phys. Rev. B 50, 6082 (1994).CrossRefGoogle Scholar
  86. 86.
    S. Sahoo, S. Polisetty, C.-G. Duan, Sitaram S. Jaswal, E. Y. Tsymbal, and Ch. Binek, “Ferroelectric control of magnetism in BaTiO 3 /Fe heterostructures via interface strain coupling”, Phys. Rev. B 76, 092108 (2007).CrossRefGoogle Scholar
  87. 87.
    B. D. Cullity, Introduction to magnetic materials. Reading, MA: Addison-Wesley (1972).Google Scholar
  88. 88.
    J. Nogués, D. Lederman, T. J. Moran, and Ivan K. Schuller, “Positive Exchange Bias in FeF2-Fe Bilayers” Phys. Rev. Lett. 76, 4624 (1996).CrossRefGoogle Scholar
  89. 89.
    J. Nogués, C. Leighton and Ivan K. Schuller, “Correlation between antiferromagnetic interface coupling and positive exchange bias” Phys. Rev. B 61, 1315 (2000).CrossRefGoogle Scholar
  90. 90.
    T. L. Kirk, O. Hellwig, and Eric E. Fullerton, “Coercivity mechanisms in positive exchange-biased Co films and CoÕPt multilayers” Phys. Rev. B, 65, 224426 (2002).CrossRefGoogle Scholar
  91. 91.
    B. Kagerer, Ch. Binek, W. Kleemann, “Freezing field dependence of the exchange bias in uniaxial FeF 2 -CoPt heterosystems with perpendicular anisotropy” J. Magn. Magn. Mater. 217, 139 (2000).CrossRefGoogle Scholar
  92. 92.
    Z. Y. Liu and S. Adenwalla, “Oscillatory interlayer exchange coupling and its temperature dependence in [Pt/Co] 3 /NiO/[Co/Pt] 3 multilayers with perpendicular anisotropy” Phys. Rev. Lett. 91, 037207-1 (2003).CrossRefGoogle Scholar
  93. 93.
    J. Nogués, J. Sort, S. Suriñach, J. S. Muñoz, M. D. Baró, J. F. Bobo, U. Lüders, E. Haanappel, M. R. Fitzsimmons, A. Hoffmann, and J. W. Cai,” Isothermal tuning of exchange bias using pulsed fields” Appl. Phys. Lett. 82, 3044 (2003).CrossRefGoogle Scholar
  94. 94.
    S. Sahoo, T. Mukherjee, K. D. Belashchenko, and Ch. Binek, “Isothermal low-field tuning of exchange bias in epitaxial Fe/Cr 2 O 3 /Fe” Appl. Phys. Lett. 91, 172506 (2007).CrossRefGoogle Scholar
  95. 95.
    T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad, and P. Svedlindh, “Aging in a Magnetic Particle System” Phys. Rev. Lett. 75, 4138 (1995).CrossRefGoogle Scholar
  96. 96.
    S. Sahoo, O. Petracic, Ch. Binek, W. Kleemann, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Magnetic relaxation phenomena in the superspin-glass system [Co 80 F 20 /Al 2 O 3 ] 10” J. Phys. Condens. Matter 14, 6729 (2002).CrossRefGoogle Scholar
  97. 97.
    R. Skomski, J. Zhou, R. D. Kirby, and D. J. Sellmyer, “Magnetic Aging” Mater. Res. Soc. Symp. Proc. 887, 133 (2006).Google Scholar
  98. 98.
    M. Pleimling “Aging phenomena in critical semi-infinite systems” Phys. Rev. B 70, 104401 (2004).CrossRefGoogle Scholar
  99. 99.
    K. H. Fischer and J. A. Hertz, Spin Glasses. Cambridge Univ. Press, Cambridge (1991).CrossRefGoogle Scholar
  100. 100.
    J. A. Mydosh, Spin Glasses: an Experimental Introduction. Taylor and Francis, London (1993).Google Scholar
  101. 101.
    P. Y. Yang, C. Song, F. Zeng, and F. Pan, “Tuning the training effect in exchange biased NiO/Ni bilayers” Appl. Phys. Lett. 92, 243113 (2008).CrossRefGoogle Scholar
  102. 102.
    S. Brems, D. Buntinx, K. Temst, Ch. Van Haesendonck, F. Radu, and H. Zabel, “Reversing the Training Effect in Exchange Biased CoO/Co Bilayers” Phys. Rev. Lett. 95, 157202 (2005).CrossRefGoogle Scholar
  103. 103.
    S. Sahoo and Ch. Binek, “Quenching of the Exchange Bias Training in Fe/Cr 2 O 3 /Fe Trilayer”, AIP. Conf. Proc. 1063, 132 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and the Nebraska Center for Materials and NanoscienceUniversity of NebraskaLincolnUSA

Personalised recommendations