Skip to main content

Superconductivity and Magnetism in Silicon and Germanium Clathrates

  • Chapter
  • First Online:
Nanoscale Magnetic Materials and Applications

Abstract

Clathrates are materials containing closed polyhedral cages stacked to form crystalline frameworks. With Si, Ge, and Sn atoms populating these frameworks, a wide variety of electronic and vibrational properties can be produced in these materials, by substitution upon framework sites or through incorporation of ions in cage-center positions. Commonly formed structures include the type I, type II, and chiral clathrate types, whose properties will be described here. Ba8Si46 with the type-I structure has been found to exhibit superconductivity with T c as high as 9 K. The enhanced T c in this compound has been shown to arise predominantly from very sharp features in the electronic densities of states associated with the extended sp 3-bonded framework. Atomic substitution can tailor these electronic properties; however, the associated disorder has been found to inevitably lower the T c due to the disrupted continuity of the framework. Efforts to produce analogous Ge-based superconductors have not been successful, due to the appearance of spontaneous vacancies, which also serve to disrupt the frameworks. The formation of these vacancies is driven by the Zintl mechanism, which plays a much more significant role for the structural stability of the Ge clathrates. The sharp density of states features in these extended framework materials may also lead to enhanced magnetic features, due to conduction electron-mediated coupling of substituted magnetic ions. This has led to magnetic ordering in Fe- and Mn-substituted clathrates. The largest number of clathrates exhibiting magnetic behavior has been produced by substitution of Eu on cage-center sites, with a ferromagnetic T c as high as 38 K observed in such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. D. Sloan Jr. and C. Koh. Clathrate Hydrates of Natural Gases, 3rd ed. CRC Press (2007).

    Google Scholar 

  2. E. D. Sloan Jr. Nature 426, 353 (2003).

    Article  Google Scholar 

  3. A. V. Milkov, Earth-Sci. Rev. 66, 183 (2004).

    Article  Google Scholar 

  4. J. S. Loveday and R. J. Nelmes. Phys. Chem. Chem. Phys. 10, 937 (2008).

    Article  Google Scholar 

  5. G. A. Jeffrey. Hydrate Inclusion Compounds In Inclusion Compounds, vol. 1, J. L. Atwood, J. E. D. Davies, and D. D. MacNicol (eds.) Academic, London, p. 135 (1984).

    Google Scholar 

  6. H. Gies. Clathrasils and zeosils: inclusion compounds with silica host frameworks In Inclusion Compounds, vol. 5, J. L. Atwood, J. E. D. Davies, and D. D. MacNicol (eds.) Oxford, p. 1 (1991).

    Google Scholar 

  7. J. S. Kasper, P. Hagenmüller, M. Pouchard, and C. Cros. Science 150, 1713 (1965).

    Article  Google Scholar 

  8. B. Eisenmann, H. Schafer, and R. Zagler. J. Less-Common Met. 118, 43–55 (1986).

    Google Scholar 

  9. S. Latturner, X. Bu, N. P. Blake, H. Metiu, and G. D. Stucky. J. Solid State Chem. 151, 61–64 (2000).

    Article  Google Scholar 

  10. N. Jaussaud, P. Toulemonde, M. Pouchard, A. San Miguel, P. Gravereau, S. Pechev, G. Goglio, and C. Cros. Solid State Sci. 6, 401–411 2004.

    Article  Google Scholar 

  11. G. S. Nolas, T. J. R. Weakley, and J. L. Cohn. Chem. Mater. 11, 2470–2473 (1999).

    Article  Google Scholar 

  12. R. Kroner, R. Nesper and H. G. von Schnering, Z. Kristallogr. NCS 186, 172 (1989).

    Google Scholar 

  13. G. Cordier and P. Woll. J. Less-Common Met. 169, 291–302 (1991).

    Google Scholar 

  14. J. Gryko, P. F. McMillan, R. F. Marzke, G. K. Ramachandran, D. Patton, S. K. Deb, and O. F. Sankey. Phys. Rev. B 62, R7707–R7710 (2000).

    Article  Google Scholar 

  15. A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, and Y. Grin. Nature 443, 320–323 (2006).

    Article  Google Scholar 

  16. S. Paschen, W. Carrillo-Cabrera, A. Bentien, V. H. Tran, M. Baenitz, Yu. Grin, and F. Steglich. Phys. Rev. B 64, 214404 (2001).

    Article  Google Scholar 

  17. R. Kroener, R. Nesper and H. G. von Schnering, Z. Kristallogr. NCS 182, 164–165 (1988).

    Google Scholar 

  18. H. Fukuoka, K. Ueno, and S. Yamanaka. J. Organomet. Chem. 611, 543–546 (2000).

    Google Scholar 

  19. S. J. Kim, S. Q. Hu, C. Uher, T. Hogan, B. Huang, J. D. Corbett, and M. G. Kanatzidis. J. Solid State Chem. 153, 321–329 (2000); H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza, and L. Häming. J. Solid State Chem. 151, 117–121 (2000); W. Carrillo-Cabrera, J. Curda, H. G. von Schnering, S. Paschen and Y. Grin, Z. Kristallogr. NCS 216, 172–172 (2001).

    Article  Google Scholar 

  20. T. F. Fässler and C. Kronseder. Z. Anorg. Allg. Chem. 624, 561 (1998).

    Article  Google Scholar 

  21. S. B. Roy, K. E. Sim, and A. D. Caplin. Philos. Mag. B 65, 1445–50 (1992).

    Google Scholar 

  22. H. Kawaji, H. Horie, S. Yamanaka, and M. Ishikawa. Phys. Rev. Lett. 74, 1427–1429 (1995).

    Article  Google Scholar 

  23. S. Yamanaka, H. Horie, and H. Kawaji. Eur. J. Solid State Inorg. Chem. 32, 799–807 (1995).

    Google Scholar 

  24. M. Imai, T. Hirano, T. Kikegawa, and O. Shimomura, Phys. Rev. B 58, 11922–11926 (1998).

    Article  Google Scholar 

  25. H. Fukuoka, J. Kiyoto, and S. Yamanaka. Inorg. Chem. 42, 2933–2937 (2003).

    Article  Google Scholar 

  26. H. Fukuoka, J. Kiyoto, and S. Yamanaka. J. Solid State Chem. 175, 237–244 (2003).

    Article  Google Scholar 

  27. M. Baitinger, H. G. von Schnering, J. H. Chang, K. Peters, and Y. Grin. Z. Kristallogr. NCS 222, 87–88 (2007).

    Google Scholar 

  28. G. S. Nolas and C. A. Kendziora. Phys. Rev. B 62, 7157 (2000).

    Article  Google Scholar 

  29. B. C. Sales, B. C. Chakoumakos, D. Mandrus, and J. W. Sharp. J. Solid State Chem. 146, 528–532 (1999).

    Article  Google Scholar 

  30. B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and D. Mandrus. Phys. Rev. B 63, 245113 (2001).

    Article  Google Scholar 

  31. R. Viennois, P. Toulemonde, M. Koza, H. Mutka, A. San Miguel, and R. Lortz. J. Phys.: Conf. Ser. 92, 012121 (2007).

    Article  Google Scholar 

  32. C. W. Myles, J. Dong, O. F. Sankey, C. A. Kendziora, and G. S. Nolas. Phys. Rev. B 65, 235208 (2002).

    Article  Google Scholar 

  33. G. A. Slack. MRS Symp. Proc. 478, 47–54 (1997).

    Article  Google Scholar 

  34. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington. Nature 395, 876–878 (1998).

    Article  Google Scholar 

  35. R. P. Hermann, V. Keppens, P. Bonville, G. S. Nolas, F. Grandjean, G. J. Long, H. M. Christen, B. C. Chakoumakos, B. C. Sales, and D. Mandrus. Phys. Rev. Lett. 97, 017401 (2006).

    Article  Google Scholar 

  36. J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack. Phys. Rev. Lett. 82, 779–782 (1999).

    Article  Google Scholar 

  37. W. Gou, Y. Li, J. Chi, J. H. Ross Jr., M. Beekman, and G. S. Nolas. Phys. Rev. B 71, 174307 (2005).

    Article  Google Scholar 

  38. R. Baumbach, F. Bridges, L. Downward, D. Cao, P. Chesler, and B. Sales. Phys. Rev. B 71, 024202 (2005).

    Article  Google Scholar 

  39. A. Bentien, M. Christensen, J. D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G. D. Stucky, and B. B. Iversen. Phys. Rev. B 69, 045107 (2004).

    Article  Google Scholar 

  40. J. S. Tse, T. Iitaka, and K. Parlinski. Europhys. Lett. 75, 153–159 (2006).

    Article  Google Scholar 

  41. J. S. Tse, K. Uehara, R. Rousseau, A. Ker, C. I. Ratcliffe, M. A. White, and G. MacKay. Phys. Rev. Lett. 85, 114 (2000).

    Article  Google Scholar 

  42. K. Moriguchi, M. Yonemura, A. Shintani, and S. Yamanaka. Phys. Rev. B 61, 9859–9862 (2000).

    Article  Google Scholar 

  43. S. Saito and A. Oshiyama. Phys. Rev. B 51, 2628–2631 (1995).

    Article  Google Scholar 

  44. T. Yokoya, A. Fukushima, T. Kiss, K. Kobayashi, S. Shin, K. Moriguchi, A. Shintani, H. Fukuoka, and S. Yamanaka. Phys. Rev. B 64, 172504 (2001).

    Article  Google Scholar 

  45. H. Sakamoto, H. Tou, H. Ishii, Y. Maniwa, E. A. Reny, and S. Yamanaka. Physica C 341, 2135–2136 (2000).

    Article  Google Scholar 

  46. K. Moriguchi, S. Munetoh, and A. Shintani. Phys. Rev. B 62, 7138–7143 (2000).

    Article  Google Scholar 

  47. R. M. Fleming, A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, S. M. Zahurak, and A. V. Makhija. Nature 352, 787 (1991).

    Article  Google Scholar 

  48. G. K. H. Madsen, K. Schwarz, P. Blaha, and D. J. Singh. Phys. Rev. B 68, 125212 (2003).

    Article  Google Scholar 

  49. J. Gryko, P. F. McMillan, R. F. Marzke, A. P. Dodokin, A. A. Demkov, and O. F. Sankey. Phys. Rev. B 57, 4172 (1998).

    Article  Google Scholar 

  50. N. F. Mott. J. Solid State Chem. 6, 348–351 (1973).

    Article  Google Scholar 

  51. K. Tanigaki, T. Shimizu, K. M. Itoh, J. Teraoka, Y. Moritomo, and S. Yamanaka. Nat. Mater. 2, 653–655 (2003).

    Article  Google Scholar 

  52. D. Connétable, V. Timoshevskii, B. Masenelli, J. Beille, J. Marcus, B. Barbara, A. M. Saitta, G.-M. Rignanese, P. Mélinon, S. Yamanaka, and X. Blase, Phys. Rev. Lett. 91, 247001 (2003).

    Article  Google Scholar 

  53. W. L. McMillan. Phys. Rev. 167, 331 (1968).

    Article  Google Scholar 

  54. P. Toulemonde, C. Adessi, X. Blase, A. San Miguel, and J. L. Tholence. Phys. Rev. B 71, 094504 (2005).

    Article  Google Scholar 

  55. H. Kawaji, K. Iwai, and S. Yamanaka. Solid State Commun. 100, 393–395 (1996).

    Article  Google Scholar 

  56. S. L. Fang, L. Grigorian, P. C. Eklund, G. Dresselhaus, M. S. Dresselhaus, H. Kawaji, and S. Yamanaka. Phys. Rev. B 57, 7686–7693 (1998).

    Article  Google Scholar 

  57. Y. Li, R. Zhang, Y. Liu, N. Chen, Z. P. Luo, X. Ma, G. Cao, Z. S. Feng, C.-R. Hu, and J. H. Ross Jr. Phys. Rev. B 75, 054513 (2007).

    Article  Google Scholar 

  58. R. F. W. Herrmann, K. Tanigaki, S. Kuroshima, and S. Kuroshima. Chem. Phys. Lett. 283, 29 (1998).

    Article  Google Scholar 

  59. Y. Li, Y. Liu, N. Chen, G. Cao, Z. Feng, J. H. Ross Jr. Phys. Lett. A 345, 398 (2005).

    Article  MATH  Google Scholar 

  60. J. D. Bryan, V. I. Srdanov, G. D. Stucky, and D. Schmidt. Phys. Rev. B 60, 3064–7 (1999).

    Article  Google Scholar 

  61. S. M. Kauzlarich, ed., Chemistry, structure, and bonding of Zintl phases and ions. VCH, New York (1996).

    Google Scholar 

  62. G. K. Ramachandran, P. F. McMillan, J. Diefenbacher, J. Gryko, J. Dong, and O. F. Sankey. Phys. Rev. B 60, 12294–12298 (1999).

    Article  Google Scholar 

  63. R. F. W. Herrmann, K. Tanigaki, T. Kawaguchi, S. Kuroshima, and O. Zhou. Phys. Rev. B 60, 13245 (1999).

    Article  Google Scholar 

  64. W. Carrillo-Cabrera, S. Budnyk, Y. Prots, and Y. Grin. Z. Anorg. Allg. Chem. 630, 2267 (2004).

    Article  Google Scholar 

  65. J.-T. Zhao and J. D. Corbett. Inorg. Chem. 33, 5721 (1994).

    Article  Google Scholar 

  66. F. Dubois and T. F. Fässler. J. Am. Chem. Soc. 127, 3264–3265 (2005).

    Article  Google Scholar 

  67. A. Kaltzoglou, S. D. Hoffmann, and T. F. Fässler. Eur. J. Inorg. Chem. 2007, 4162–4167 (2007).

    Article  Google Scholar 

  68. G. K. Ramachandran and P. F. McMillan. J. Solid State Chem. 154, 626–634 (2000).

    Article  Google Scholar 

  69. Y. Li, J. Chi, W. Gou, S. Khandekar, and J. H. Ross Jr. J. Phys.: Condens. Matter 15, 5535 (2003).

    Article  Google Scholar 

  70. Y. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, and H. Noel. J. Phys.: Condens. Matter 14, 7991–8004 (2002).

    Article  Google Scholar 

  71. C. L. Condron, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder. Chem. Mater. 18, 4939–4945 (2006).

    Article  Google Scholar 

  72. K. A. Kovnir, N. S. Abramchuk, J. V. Zaikina, M. Baitinger, U. Burkhardt, W. Schnelle, A. V. Olenev, O. I. Lebedev, G. Van Tendeloo, E. V. Dikarev, and A. V. Shevelkov. Z. Krist. 221, 527–532 (2006).

    Google Scholar 

  73. J. V. Zaikina, W. Schnelle, K. A. Kovnir, A. V. Olenev, Y. Grin, and A. V. Shevelkov. Solid State Sci. 9, 664 (2007).

    Article  Google Scholar 

  74. M. M. Shatruk, K. A. Kovnir, M. Lindsjö, I. A. Presniakov, L. A. Kloo, and A. V. Shevelkov. J. Solid State Chem. 161, 233–242 (2001).

    Article  Google Scholar 

  75. D. Nataraj and J. Nagao. J. Solid State Chem. 177, 1905–1911 (2004).

    Article  Google Scholar 

  76. T. Rachi, K. Tanigaki, R. Kumashiro, J. Winter, and H. Kuzmany. Chem. Phys. Lett. 409, 48–51 (2005).

    Article  Google Scholar 

  77. A. Czybulka, B. Kuhl, and H.-U. Schuster. Z. Anorg. Allg. Chem. 594, 23–28 (1991).

    Article  Google Scholar 

  78. R. Kroner, K. Peters, H. G. von Schnering, and R. Nesper. Z. Kristallogr. NCS 213, 664 (1998).

    Google Scholar 

  79. F. M. Grosche, H. Q. Yuan, W. Carrillo-Cabrera, S. Paschen, C. Langhammer, F. Kromer, G. Sparn, M. Baenitz, Yu. Grin, and F. Steglich. Phys. Rev. Lett. 87, 247003 (2001).

    Article  Google Scholar 

  80. H. G. von Schnering, A. Zurn, J. H. Chang, M. Baitinger, and Y. Grin. Z. Anorg. Allg. Chem. 633, 1147–1153 (2007).

    Article  Google Scholar 

  81. W. Carrillo-Cabrera, H. Borrmann, S. Paschen, M. Baenitz, F. Steglich, and Y. Grin. J. Solid State Chem. 178, 715–728 (2005).

    Article  Google Scholar 

  82. H. Q. Yuan, F. M. Grosche, W. Carrillo-Cabrera, V. Pacheco, G. Sparn, M. Baenitz, U. Schwarz, Y. Grin, and F. Steglich. Phys. Rev. B 70, 174512 (2004).

    Article  Google Scholar 

  83. R. Viennois, P. Toulemonde, C. Paulsen, and A. San-Miguel. J. Phys.: Condens. Matter 17, L311–L319 (2005).

    Article  Google Scholar 

  84. T. Rachi, H. Yoshino, R. Kumashiro, M. Kitajima, K. Kobayashi, K. Yokogawa, K. Murata, N. Kimura, H. Aoki, H. Fukuoka, S. Yamanaka, H. Shimotani, T. Takenobu, Y. Iwasa, T. Sasaki, N. Kobayashi, Y. Miyazaki, K. Saito, F. Z. Guo, K. Kobayashi, K. Osaka, K. Kato, M. Takata, and K. Tanigaki. Phys. Rev. B 72, 144504 (2005).

    Article  Google Scholar 

  85. P. Durand, G. R. Darling, Y. Dubitsky, A. Zaopo, and M. J. Rosseinsky. Nature Mater. 2, 605 (2003).

    Article  Google Scholar 

  86. S. Picozzi. Nature Mater. 3, 349 (2004).

    Article  Google Scholar 

  87. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. MacDonald. Rev. Mod. Phys. 78, 809 (2006).

    Article  Google Scholar 

  88. K. A. Kikoin and V. N. Fleurov. Transition Metal Impurities in Semiconductors. World Scientific, Singapore (1994).

    Google Scholar 

  89. T. Kawaguchi, K. Tanigaki, and M. Yasukawa. Appl. Phys. Lett. 77, 3438 (2000).

    Article  Google Scholar 

  90. Y. Li and J. H. Ross Jr. Appl. Phys. Lett. 83, 2868 (2003).

    Article  Google Scholar 

  91. P. Mahadevan and A. Zunger. Phys. Rev. Lett. 88, 047205 (2002).

    Article  Google Scholar 

  92. Y. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, H. Noel, A. Saccone, and R. Ferro. Physica B 328, 44 (2003).

    Article  Google Scholar 

  93. G. T. Woods, J. Martin, M. Beekman, R. P. Hermann, F. Grandjean, V. Keppens, O. Leupold, G. J. Long, and G. S. Nolas. Phys. Rev. B 73, 174403 (2006).

    Article  Google Scholar 

  94. S. Paschen, S. Budnyk, U. Kohler, Y. Prots, K. Hiebl, F. Steglich, and Y. Grin. Physica B 383, 89 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Robert A. Welch Foundation (Grant No. A-1526) and the NSF (Grant No. DMR-0821284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Ross Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ross, J.H., Li, Y. (2009). Superconductivity and Magnetism in Silicon and Germanium Clathrates. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics