Designed Magnetic Nanostructures



The fabrication, structure, and magnetism of a variety of designed nanostructures are reviewed, from self-assembled thin-film structures and magnetic surface alloys to core–shell nanoparticles and clusters embedded in bulk matrices. The integration of clusters and other nanoscale building blocks in complex two- and three-dimensional nanostructures leads to new physics and new applications. Some explicitly discussed examples are interactions of surface-supported or embedded impurities and clusters, the behavior of quantum states in free and embedded clusters, the preasymptotic coupling of transition-metal dots through substrates, inverted hysteresis loops (proteresis) in core–shell nanoparticles, and nanoscale entanglement of anisotropic magnetic nanodots for future quantum information processing.


Magnetic Anisotropy Orbit Coupling Scanning Tunneling Microscopy Image Kondo Effect Magnetic Nanostructures 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The contribution of A.E. to this work was supported by NSF CAREER (DMR-0747704), that of R.S. by DoE, and D.J.S. by NSF-MRSEC and INSIC. The authors havebenefited from discussions with X.-H. Wei, R. D. Kirby, S. A. Michalski, S. Enders, J. Zhang, R. Zhang, J. Zhou (Nebraska), and J. Honolka, J. Zhang, V. Sessi, I. Brihuega, and K. Kern (Stuttgart).


  1. 1.
    Feynman, R. P.: There’s plenty of room at the bottom. Eng. Sci. 23, 22 (1960)Google Scholar
  2. 2.
    Solzi, M., et al.: Macroscopic Magnetic Properties of Nanostructured and Nanocomposites Systems. In H. S. Nalwa (Ed.), Magnetic nanostructures, pp. 123–201. American Scientific, Stephenson Ranch (2002)Google Scholar
  3. 3.
    Skomski, R.: Nanomagnetics. J. Phys.: Condens. Matter 15, R841 (2003)Google Scholar
  4. 4.
    Sellmyer, D. J. and Skomski, R. (Eds.): Advanced Magnetic Nanostructures. Springer, Berlin (2006)Google Scholar
  5. 5.
    Terris, B. D., et al.: Ion-beam patterning of magnetic films using stencil masks. Appl. Phys. Lett. 75, 403 (1999)Google Scholar
  6. 6.
    Coehoorn, R., et al.: Meltspun permanent magnet materials containing Fe3B as the main phase. J. Magn. Magn. Mater. 80, 101 (1989)Google Scholar
  7. 7.
    Toshima, N., et al.: Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters. Eur. Phys. J. D 16, 209 (2001)Google Scholar
  8. 8.
    Wei, X.-H., et al.: Proteresis in Co:CoO core-shell nanoclusters. J. Appl. Phys. 103, 07D514-1-3 (2008)Google Scholar
  9. 9.
    Khanna, S. N., et al.: Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. Phys. Rev. Lett. 89, 016803-1-4 (2002)Google Scholar
  10. 10.
    Bland, J. A. C. and Heinrich, B. (Eds.): Ultrathin Magnetic Structures I. Springer, Berlin (2005)Google Scholar
  11. 11.
    Himpsel, F. J., et al.: Magnetic nanostructures. Adv. Phys. 47, 511 (1998)Google Scholar
  12. 12.
    Sawicki, M., et al.: Exchange springs in antiferromagnetically coupled DyFe2-YFe2 superlattices. Phys. Rev. B 62, 5817 (2000)Google Scholar
  13. 13.
    Al-Omari, A. and Sellmyer, D. J.: Magnetic properties of nanostructured CoSm/FeCo films. Phys. Rev. B 52, 3441 (1995)Google Scholar
  14. 14.
    Sellmyer, D. J.: Applied physics: strong magnets by self-assembly. Nature 420, 374 (2002)Google Scholar
  15. 15.
    Zeng, H., et al.: Curie temperature of FePt:B2O3 nanocomposite films. Phys. Rev. B 66, 184425 (2002)Google Scholar
  16. 16.
    Sellmyer, D. J., et al.: Nanoscale design of films for extremely high density magnetic recording. Phys. Low-Dim. Struct. 1–2, 155 (1998)Google Scholar
  17. 17.
    Rao, B. K. and Jena, P.: Giant magnetic moments of nitrogen-doped Mn clusters and their relevance to ferromagnetism in Mn-Doped GaN. Phys. Rev. Lett. 89, 185504 (2002)Google Scholar
  18. 18.
    Sui, Y. C., et al.: Nanotube magnetism. Appl. Phys. Lett. 84, 1525 (2004)Google Scholar
  19. 19.
    Kumar, K.: RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63, R13–57 (1988)Google Scholar
  20. 20.
    Zhou, J., et al.: Sm-Co-Ti high-temperature permanent magnets. Appl. Phys. Lett. 77, 1514 (2000)Google Scholar
  21. 21.
    Wernsdorfer, W., et al.: Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite. Phys. Rev. Lett. 79, 4014 (1997)Google Scholar
  22. 22.
    Rong, Ch.-B., et al.: Structural phase transition and ferromagnetism in monodisperse 3 nm FePt particles. J. Appl. Phys. 101, 043913-1-4 (2007)Google Scholar
  23. 23.
    Skomski, R. and Coey, J. M. D.: Giant energy product in nanostructured two-phase magnets. Phys. Rev. B 48, 15812 (1993)Google Scholar
  24. 24.
    Samorjai, G. A.: Introduction to Surface Chemistry and Catalysis. Wiley, New York (1994)Google Scholar
  25. 25.
    Wieckowski, A., Savinova, E. R. and Constantinos, V. G. (Eds.): Catalysis and Electrocatalysis at Nanoparticle Surfaces. Marcel Dekker, New York (2003)Google Scholar
  26. 26.
    Skomski, R. and Sellmyer, D. J.: Magnetic impurities in magic-number clusters.Google Scholar
  27. 27.
    Pankhurst, Q. A., et al.: J. Phys. D: Appl. Phys. 36, R167–R181 (2003).Google Scholar
  28. 28.
    Sun, S., et al.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000)Google Scholar
  29. 29.
    Weller, D., et al.: High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10 (2000)Google Scholar
  30. 30.
    Billas, I. M. L., et al.: Magnetism from the atom to the bulk in Iron, Cobalt, and Nickel clusters. Science 265, 1682 (1994)Google Scholar
  31. 31.
    Stepanyuk, V. S., et al.: Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd(001) and Pt(001) surfaces. Phys. Rev. B 53, 2121 (1996)Google Scholar
  32. 32.
    Pastor, M., et al.: Magnetic anisotropy of 3d transition-metal clusters. Phys. Rev. Lett. 75, 2, 326 (1995)Google Scholar
  33. 33.
    Nonas, B., et al.: Strongly enhanced orbital moments and anisotropies of adatoms on the Ag(001) surface. Phys. Rev. Lett. 86, 10, 2146 (2001)Google Scholar
  34. 34.
    Goldoni, A., et al.: Experimental evidence of magnetic ordering at the Rh(100) surface. Phys. Rev. Lett. 82, 15, 3156 (1999)Google Scholar
  35. 35.
    Martin, T. P.: Shells of atoms. Phys. Rept. 273, 199 (1996)Google Scholar
  36. 36.
    Heiz, U., et al.: Size-dependent molecular dissociation on mass-selected, supported metal clusters. J. Am. Chem. Soc. 120, 9668 (1998)Google Scholar
  37. 37.
    Lee, H. K., et al.: Monte Carlo simulations of interacting magnetic nanoparticles. J. Appl. Phys. 91, 10, 6926 (2002)Google Scholar
  38. 38.
    Pierce, J. B., et al.: Ferromagnetic stability in Fe nanodot assemblies on Cu(111) induced by indirect coupling through the substrate. Phys. Rev. Lett. 92, 23, 237201 (2004)Google Scholar
  39. 39.
    Dürr, H. A., et al.: Spin and orbital magnetization in self-assembled Co clusters on Au(111). Phys. Rev. B 59, 2, R701 (1999)Google Scholar
  40. 40.
    Fruchart, O., et al.: Enhanced coercivity in submicrometer-sized ultrathin epitaxial dots with in-plane magnetization. Phys. Rev. Lett. 82, 6, 1305 (1999)Google Scholar
  41. 41.
    Edmonds, K. W., et al.: Doubling of the orbital magnetic moment in nanoscale Fe clusters. Phys. Rev. B 60, 1, 472 (1999)Google Scholar
  42. 42.
    Guevara, J., et al.: Large variations in the magnetization of Co clusters induced by noble-metal coating. Phys. Rev. Lett. 81, 24, 5306 (1998)Google Scholar
  43. 43.
    Redinger, J., et al.: Ferromagnetism of 4d and 5d transition-metal monolayers on Ag(111). Phys. Rev. B 51, 19, 13852 (1995)Google Scholar
  44. 44.
    Allwood, D. A., et al.: Nanoscale magnetics magnetic domain wall logic. Science 309, 1688 (2005)Google Scholar
  45. 45.
    Sorge, K. D., et al.: Interactions and switching behavior of anisotropic magnetic dots. J. Appl. Phys. 95, 7414 (2004)Google Scholar
  46. 46.
    Weller, D. and Moser, A.: Thermal effect limits in ultrahigh density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999)Google Scholar
  47. 47.
    Suess, D., et al.: Exchange spring media for perpendicular recording. Appl. Phys. Lett. 87, 012504 (2005)Google Scholar
  48. 48.
    Suess, D.: Multilayer exchange spring media for magnetic recording. Appl. Phys. Lett. 89, 113105-1-3 (2006)Google Scholar
  49. 49.
    Victora, R. H. and Shen, X.: Composite media for perpendicular magnetic recording. IEEE Trans. Magn. 41, 537 (2005)Google Scholar
  50. 50.
    Sellmyer, D. J., et al.: High-anisotropy nanocomposite films for magnetic recording. IEEE Trans. Magn. 37, 1286 (2001)Google Scholar
  51. 51.
    Wang, J.-P., et al.: Composite media (dynamic tilted media) for magnetic recording. Appl. Phys. Lett. 86, 142504-1-3 (2005)Google Scholar
  52. 52.
    Goodman, S. J., et al.: Micromagnetics of hysteresis loops in CGC perpendicular media. IEEE Trans. Magn. 39, 2329 (2003)Google Scholar
  53. 53.
    Dobin, A. Yu., et al.: Domain wall assisted magnetic recording. Appl. Phys. Lett. 89, 062512-1-3 (2006)Google Scholar
  54. 54.
    Baettig, P., et al.: Ab initio prediction of a multiferroic with large polarization and magnetization. Appl. Phys. Lett. 86, 012505-1-3 (2005)Google Scholar
  55. 55.
    Barth, J. V., et al.: Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671 (2005)Google Scholar
  56. 56.
    Wang, F. and Lakhtakia, A. (Eds.): Selected Papers on Nanotechnology—Theory and Modeling, Milestone Series 182. SPIE Press, Bellingham (2006)Google Scholar
  57. 57.
    Skomski, R., et al.: Micromagnetics of ultrathin films with perpendicular magnetic anisotropy. Phys. Rev. B 58, 3223 (1998)Google Scholar
  58. 58.
    Skomski, R.: Nanomagnetic scaling. J. Magn. Magn. Mater. 272–276, 1476–1481 (2004)Google Scholar
  59. 59.
    Skomski, R.: Role of thermodynamic fluctuations in magnetic recording. J. Appl. Phys. 101, 09B104-1-6 (2007)Google Scholar
  60. 60.
    Qiang, Y., et al.: Magnetism of Co nanocluster films. Phys. Rev. B 66, 064404 (2002)Google Scholar
  61. 61.
    Sellmyer, D. J., et al.: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys.: Condens. Matter 13, R433–R460 (2001)Google Scholar
  62. 62.
    Liou, S. H. and Yao, Y. D.: Development of high coercivity magnetic force microscopy tips. J. Magn. Magn. Mater. 190, 130 (1998)Google Scholar
  63. 63.
    Kent, A. D., et al.: Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays. J. Appl. Phys. 76, 6656 (1994)Google Scholar
  64. 64.
    Xu, Y. F., et al.: Cluster-Assembled Nanocomposites. In D. J. Sellmyer and R. Skomski (Eds.), Advanced magnetic nanostructures, ch. 8, pp. 207–238. Springer, Berlin (2006)Google Scholar
  65. 65.
    Enders, A., et al.: Magnetism of low-dimensional metallic structures. In H. Kronmüller and S. Parkin (Eds.), The handbook of magnetism and advanced magnetic materials, Vol. 1: Fundamentals and theory, pp. 577–598. Chichester, UK: John Wiley & Sons Ltd. (2006)Google Scholar
  66. 66.
    Barth, J. V.: Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58, 375 (2007)Google Scholar
  67. 67.
    Gambardella, P., et al.: Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301 (2002)Google Scholar
  68. 68.
    Repetto, D., et al.: Structure and magnetism of atomically thin Fe layers on flat and vicinal Pt surfaces. Phys. Rev. B 74, 054408 (2006)Google Scholar
  69. 69.
    Skomski, R. and Coey, J. M. D.: Permanent Magnetism. Institute of Physics, Bristol (1999)Google Scholar
  70. 70.
    Skomski, R., et al.: Effective Demagnetizing Factors of Complicated Particle Mixtures. IEEE Trans. Magn. 43, (6), 2956 (2007)Google Scholar
  71. 71.
    Zhang, J., et al.: Magnetism of Fe clusters formed by buffer-layer assisted growth on Pt(997). Eur. Phys. J. D 45, 515 (2007)Google Scholar
  72. 72.
    Rusponi, S., et al.: The Remarkable Difference Between Surface and Step Atoms in the Magnetic Anisotropy of Two-Dimensional Nanostructures. Nature Mat. 2, 546 (2003)Google Scholar
  73. 73.
    Brihuega, I., et al.: Electronic decoupling and templating of Co nanocluster arrays on the boron nitride nanomesh. Surf. Sci. Letters 602(14) (2008) L95–L99.Google Scholar
  74. 74.
    Lingenfelder, M., et al.: Towards surface-supported supramolecular architectures: tailored coordination assembly of 1,4-benzenedicarboxylate and Fe on Cu(100). Chem. Eur. J. 10, 1913 (2004)Google Scholar
  75. 75.
    Dmitriev, A., et al.: Design of extended surface-supported chiral metal-organic arrays comprising mononuclear iron centers. Langmuir 41, 4799 (2004)Google Scholar
  76. 76.
    Bromann, K., et al.: Controlled deposition of size-selected Silver nanoclusters. Science 274, 956 (1996)Google Scholar
  77. 77.
    Weaver, J. and Waddill, G.: Cluster assembly of interfaces: Nanoscale Engineering. Science 251, 1444 (1991), G. Kerner and M. Asscher, “Laser patterning of metallic films via buffer layer”, ibid.Google Scholar
  78. 78.
    Huang, L., et al.: Buffer-layer-assisted growth of nanocrystals: Ag-Xe-Si(111). Phys. Rev. Lett. 80, 18, 4095 (1998)Google Scholar
  79. 79.
    Haley, C. and Weaver, J.: Buffer-layer-assisted nanostructure growth via two-dimensional cluster–cluster aggregation. Surf. Sci. 518, 243 (2002)Google Scholar
  80. 80.
    Weaver, J. and Antonov, V. N.: Synthesis and patterning of nanostructures of (almost) anything on anything. Surf. Sci. 557, 1 (2004)Google Scholar
  81. 81.
    Hahn, E., et al.: Orientational instability of vicinal Pt surfaces close to (111). Phys. Rev. Lett., 72 3378 (1994)Google Scholar
  82. 82.
    Corso, M., et al.: Boron nitride nanomesh. Science 303, 217 (2004)Google Scholar
  83. 83.
    Bansmann, J., et al. : Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Repts. 56, 189 (2005)Google Scholar
  84. 84.
    Shen, J., et al.: The effect of spatial confinement on magnetism: films, stripes and dots of Fe on Cu(111). J. Phys.: Cond. Mat. 15, R1 (2003)Google Scholar
  85. 85.
    Repetto, D., et al.: Magnetism of Fe clusters and islands on Pt surfaces. Appl. Phys. A 82, 109 (2006)Google Scholar
  86. 86.
    Yeomans, J. M.: Statistical Mechanics of Phase Transitions. University Press, Oxford (1992)Google Scholar
  87. 87.
    Yokoyama, T., et al.: Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619 (2001)Google Scholar
  88. 88.
    Grill, L., et al.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687 (2007)Google Scholar
  89. 89.
    Dmitriev, A., et al.: Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew. Chem. Int. Ed. 42, 2670 (2003)Google Scholar
  90. 90.
    Stepanow, S., et al.: Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. Nat. Mater. 3, 229 (2004)Google Scholar
  91. 91.
    Ruben, M., et al.: 2D supramolecular assemblies of Benzene 1,3,5-tri-yl Tribenzoic Acid: Temperature-induced phase transformations and hierarchical organization with macrocyclic molecules. J. Am. Chem. Soc. 128, 15644 (2006)Google Scholar
  92. 92.
    Hauschild, A., et al.: Molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface. Phys. Rev. Lett. 94, 036106 (2005)Google Scholar
  93. 93.
    Boehringer, M., et al.: Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 83, 324 (1999)Google Scholar
  94. 94.
    Klemmer, T., et al.: Magnetic hardening and coercivity in L10 Ordered FePd ferromagnets. Scripta Met. Mater. 33, 1793 (1995)Google Scholar
  95. 95.
    T.-Lee, et. al.: Growth and surface alloying of Fe on Pt(997). Surf. Sci. 600, 3266 (2006)Google Scholar
  96. 96.
    Ravindran, P., et al.: Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations Phys. Rev. B 63, 144409-1-18 (2001)Google Scholar
  97. 97.
    Komelj, M., et al.: Influence of the substrate on the magnetic anisotropy of monatomic nanowires. Phys. Rev. B 73, 134428 (2006)Google Scholar
  98. 98.
    Lee, T.-Y., et al.: Growth and surface alloying of Fe on Pt(997). Surf. Sci. 600 (16) 3266 (2006)Google Scholar
  99. 99.
    Skomski, R., et al.: Substrate-controlled growth and magnetism of nanosize Fe clusters on Pt. J. Appl. Phys. 103, 07D519-1-3 (2008)Google Scholar
  100. 100.
    Ising E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253 (1925)Google Scholar
  101. 101.
    De Jongh, L. J. and Miedema, A. R.: Experiments on simple magnetic model systems. Advan. Phys. 23, 1 (1974)Google Scholar
  102. 102.
    Shen, J., et al.: Magnetism in one dimension: Fe on Cu(111). Phys. Rev. B 56, 2340 (1997)Google Scholar
  103. 103.
    Alefeld, G.: Wasserstoff in Metallen als Beispiel für ein Gittergas mit Phasenumwandlungen. Phys. stat. sol. 32, 67 (1969)Google Scholar
  104. 104.
    Wagner, H. and Horner, H.: Elastic interaction and the phase transition in coherent metal-hydrogen system. Adv. Phys. 23, 587 (1974)Google Scholar
  105. 105.
    Skomski, R.: Interstitial Modification, In J. M. D. Coey (Ed.), Rare-earth—iron permanent magnets, pp. 178–217. University Press, Oxford (1996)Google Scholar
  106. 106.
    Wood, R.: The feasibility of magnetic recording at 1 Terabit per square inch. IEEE Trans. Magn. 36, 36 (2000)Google Scholar
  107. 107.
    Sellmyer, D. J., et al.: High-anisotropy nanocomposite films for magnetic recording. IEEE Trans. Magn. 37, 1286 (2001)Google Scholar
  108. 108.
    McCurrie, R. A. and Gaunt, P.: The magnetic properties of platinum-cobalt near the equiatomic composition. I. The experimental data. Philos. Mag. 13, 567 (1966)Google Scholar
  109. 109.
    Zeng, H., et al.: Orientation-controlled nonepitaxial L10 CoPt and FePt films. Appl. Phys. Lett. 80, 2350 (2002)Google Scholar
  110. 110.
    Yan, M. L. et al.: Fabrication of nonepitaxially grown double-layered FePt:C/FeCoNi thin films for perpendicular recording. Appl. Phys. Lett. 83, 3332 (2003)Google Scholar
  111. 111.
    Xu, Y., et al.: Magnetic properties of dilute FePt:C nanocluster films. J. Appl. Phys. 97, 10J320 (2005)Google Scholar
  112. 112.
    Xu, Y., et al.: Magnetic properties of L10 FePt and FePt:Ag nanocluster films. J. Appl. Phys. 93, 10 (2003) 8289Google Scholar
  113. 113.
    Stoner, E. C. and Wohlfarth, E. P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948); reprinted by IEEE Trans. Magn. 27, 3475 (1991)MATHGoogle Scholar
  114. 114.
    Kersten, M.: Zur Theorie der ferromagnetischen Hysterese und der Anfangspermeabilität. Z. Phys. 44, 63 (1943)Google Scholar
  115. 115.
    Yoshizawa, Y., et al.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988)Google Scholar
  116. 116.
    Herzer, G.: Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 112, 258 (1992)Google Scholar
  117. 117.
    Chikazumi, S., Physics of ferromagnetism, Second edition. Oxford University Press, (1997)Google Scholar
  118. 118.
    Kittel, Ch.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965 (1946)Google Scholar
  119. 119.
    Kronmüller, H. and Schrefl, T.: Interactive and cooperative magnetization processes in hard magnetic materials. J. Magn. Magn. Mater. 129, 66 (1994)Google Scholar
  120. 120.
    Skomski, R.: Simple Models of Magnetism. University Press, Oxford (2008)Google Scholar
  121. 121.
    Skomski, R., et al.: Magnetization reversal in cubic nanoparticles with uniaxial surface anisotropy. IEEE Trans. Magn. 43, (6), 2890 (2007)Google Scholar
  122. 122.
    Kronmüller, H.: Theory of nucleation fields in inhomogeneous ferromagnets. Phys. Stat. Sol. (b) 144, 385 (1987)Google Scholar
  123. 123.
    Nieber, S. and Kronmüller, H.: Nucleation fields in periodic multilayer’s. Phys. Stat. Sol. (b) 153, 367 (1989)Google Scholar
  124. 124.
    Kneller, E. F. and Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588 (1991)Google Scholar
  125. 125.
    Gradmann, U.: In Handbook of Magnetic Materials Vol. 7, In K. H. J. Buschow (Ed.), Elsevier Science Publishers B. V., New York, (1993)Google Scholar
  126. 126.
    Kachkachi, H. and Bonet, E.: Surface-induced cubic anisotropy in nanomagnets. Phys. Rev. B 73, 224402-1-7 (2006)Google Scholar
  127. 127.
    Komelj, M., et al.: From the bulk to monatomic wires: An ab initio study of magnetism in Co systems with various dimensionality. Phys. Rev. B 66, 140407-1-4 (2002)Google Scholar
  128. 128.
    Daalderop, G. H. O., et al.: First-principles calculation of the magnetic anisotropy energy of (Co)n/(X)m multilayers. Phys. Rev. B 42, 11, 7270 (1990)Google Scholar
  129. 129.
    Wang, D.-Sh., et al.: First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B 47, 14932 (1993)Google Scholar
  130. 130.
    Skomski, R.: Exchange-Controlled Magnetic Anisotropy. J. Appl. Phys. 91, 8489 (2002)Google Scholar
  131. 131.
    Sander, D., et al.: Reversible H-induced switching of the magnetic easy axis in Ni/Cu(001) thin films. Phys. Rev. Lett. 93, 247203-1-4 (2004)Google Scholar
  132. 132.
    Brooks, H.: Ferromagnetic anisotropy and the itinerant electron model. Phys. Rev. 58, 909 (1940)MATHGoogle Scholar
  133. 133.
    Sander, D., et al.: Film stress and domain wall pinning in sesquilayer iron films on W(110). Phys. Rev. Lett. 77, 2566 (1996)Google Scholar
  134. 134.
    Morales, M. A., et al.: Surface anisotropy and magnetic freezing of MnO nanoparticles. Phys. Rev. B 75, 134423 (1–5) (2007)Google Scholar
  135. 135.
    Gambardella, P., et al.: Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130 (2003)Google Scholar
  136. 136.
    Ŝipr, O., et al.: Magnetic structure of free iron clusters compared to iron crystal surfaces. Phys. Rev. B 70, 174423 (2004)Google Scholar
  137. 137.
    Kechrakos, D. and Trohidou, K.: Magnetic properties of dipolar interacting single-domain particles. Phys. Rev. B 58, 12169 (1998)Google Scholar
  138. 138.
    Novosad, V., et al. : Effect of interdot magnetostatic interaction on magnetization reversal in circular dot arrays. Phys. Rev. B 65, 60402 (2002)Google Scholar
  139. 139.
    Stepanyuk, V. S., et al.: Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd(001) and Pt(001) surfaces. Phys. Rev. B 53, 2121(1996)Google Scholar
  140. 140.
    Ederer, C., et al.: Magnetism in systems with various dimensionalities: A comparison between Fe and Co. Phys. Rev. B 68, 52402 (2003)Google Scholar
  141. 141.
    Garibay-Alonso, R. and López-Sandoval, R.: Ground-state spin local magnetic moments of deposited Fe clusters Solid State Comm. 134, 503 (2005)Google Scholar
  142. 142.
    Skomski, R., et al.: Finite-temperature anisotropy of PtCo magnets. IEEE Trans. Magn. 39, 2917 (2003)Google Scholar
  143. 143.
    Mryasov, O. N., et al.: Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model. Europhys. Lett. 69, 805 (2005)Google Scholar
  144. 144.
    Skomski, R., et al.: Finite-temperature anisotropy of magnetic alloys. J. Appl. Phys. 99, 08E916-1-4 (2006)Google Scholar
  145. 145.
    Tserkovnyak, Y., et al.: Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601-1-4 (2002)Google Scholar
  146. 146.
    Chipara, M. I., et al.: Magnetic modes in Ni nanowires. J. Magn. Magn. Mater. 249, 246 (2002)Google Scholar
  147. 147.
    Skomski, R., et al: Incoherent magnetization reversal in nanowires. J. Magn. Magn. Mater. 249, 175 (2002)Google Scholar
  148. 148.
    McMichael, R. D., et al.: Localized ferromagnetic resonance in inhomogeneous thin films. Phys. Rev. Lett. 90, 227601-1-4 (2003)Google Scholar
  149. 149.
    Andersen, T., et al.: Substrate effects on surface magnetism of Fe/W(110) from first principles. Phys. Rev. B 74, 184415-1-8 (2006)Google Scholar
  150. 150.
    Kashyap, A., et al.: Magnetism of L10 compounds with the composition MT (M = Rh, Pd, Pt, Ir and T = Mn, Fe, Co, Ni). J. Appl. Phys. 95, 7480 (2004)Google Scholar
  151. 151.
    Umetsu, R. Y., et al.: Magnetic anisotropy energy of antiferromagnetic L10-type equiatomic Mn alloys. Appl. Phys. Lett. 89, 052504-1-3 (2006)Google Scholar
  152. 152.
    Willoughby, S., et al.: Electronic, Magnetic and Structural Properties of L10 FePtxPd1-x Alloys. J. Appl. Phys. 91, 8822 (2002)Google Scholar
  153. 153.
    McHenry, M. E., et al.: First principles calculations of the electronic structure of Fe1-xCoxPt IEEE Trans. Mag. 37, 1277 (2001)Google Scholar
  154. 154.
    Skomski, R.: Phase formation in L10 magnets. J. Appl. Phys. 101, 09N517-1-3 (2007)Google Scholar
  155. 155.
    Skomski, R. and Sellmyer, D.J.: Curie Temperature of Multiphase Nanostructures. J. Appl. Phys. 87, 4756 (2000)Google Scholar
  156. 156.
    Evetts, J. E. (Ed.): Concise Encyclopedia of Magnetic and Superconducting Materials, Pergamon, Oxford, (1992)Google Scholar
  157. 157.
    O’Shea, M. J. and Al-Sharif, A. L.: Inverted hysteresis in magnetic systems with interface exchange. J. Appl. Phys. 75, 6673 (1994)Google Scholar
  158. 158.
    Skomski, R., et al.: Quantum entanglement of anisotropic magnetic nanodots. Phys. Rev. A 70, Art. No. 062307-1-4 (2004)Google Scholar
  159. 159.
    Tejada, J., et al.: Macroscopic resonant tunneling of magnetization in ferritin. Phys. Rev. Lett. 79, 1754 (1997);Google Scholar
  160. 160.
    Lambrecht, W. R. L. and Andersen, O. K.: Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B 34, 2439 (1986)Google Scholar
  161. 161.
    Tank, R. W. and Arcangeli, C.: An introduction to the third-generation LMTO method. Phys. Stat. Sol. (b) 217, 89 (2000)Google Scholar
  162. 162.
    Andersen, O. K., et al.: Muffin-tin orbitals of arbitrary order. Phys. Rev. B 62, R16219–R16222 (2000)Google Scholar
  163. 163.
    Löwdin, P.-O.: A note on the Quantum-Mechanical Perturbation Theory. J. Chem. Phys. 19, 1396 (1951)MathSciNetGoogle Scholar
  164. 164.
    Ashcroft, N. W. and Mermin, N. D.: Solid State Physics. Saunders, Philadelphia (1976)Google Scholar
  165. 165.
    Skomski, R.: RKKY Interactions between nanomagnets of arbitrary shape. Europhys. Lett. 48, 455 (1999)Google Scholar
  166. 166.
    Mattis, D. C.: Theory of Magnetism. Harper and Row, New York, (1965)Google Scholar
  167. 167.
    Skomski, R., et al.: Indirect exchange in dilute magnetic semiconductors. J. Appl. Phys. 99, 08D504-1-3 (2006)Google Scholar
  168. 168.
    Dietl, T., et al.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)Google Scholar
  169. 169.
    Priour Jr., D. J., et al.: A disordered RKKY lattice mean field theory for ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 92, 117201 (2004)Google Scholar
  170. 170.
    Coey, J. M. D., et al.: Ferromagnetism in Fe-doped SnO2 thin films. APL 84, 1332 (2004)Google Scholar
  171. 171.
    Das Pemmaraju, Ch. and Sanvito, S.: Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 94, 217205, 1–4 (2005)Google Scholar
  172. 172.
    Venkatesan, M., et al.: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004)Google Scholar
  173. 173.
    Coey, J. M. D., et al.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)Google Scholar
  174. 174.
    Griffin, K. A., et al.: Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett. 94, 157204-1-4 (2005)Google Scholar
  175. 175.
    Zhang, J., et al.: Temperature-dependent orbital-moment anisotropy in dilute magnetic oxides. Phys. Rev. B 75, 214417-1-5 (2007)Google Scholar
  176. 177.
    Antel, Jr, W. J., et al.: Induced ferromagnetism and anisotropy of Pt layers in Fe/Pt(001) multilayers. Phys. Rev. B 60, 12933 (1999)Google Scholar
  177. 178.
    Janak, J. F.: Uniform susceptibilities of metallic elements. Phys. Rev. B 16, 255 (1977)Google Scholar
  178. 179.
    Fulde, P.: Electron Correlations in Molecules and Solids. Springer, Berlin (1991)Google Scholar
  179. 180.
    Celinski, Z. and Heinrich, B.: Exchange coupling through Fe/Cu, Pd, Ag, Au/Fe Trilayers. J. Magn. Magn. Mater. 99, L25 (1991)Google Scholar
  180. 181.
    Qi, Q.-N., et al., Strong ferromagnets: Curie temperature and density of states. J. Phys.: Condens. Matter 6, 3245 (1994)Google Scholar
  181. 182.
    Mohn, P.: Magnetism in the Solid State. Springer, Berlin (2003)Google Scholar
  182. 183.
    Fischer, K.-H. and Hertz, A. J.: Spin Glasses. University Press, Cambridge (1991)Google Scholar
  183. 184.
    Kouvenhoven, L. and Glazman, L.: Revival of the Kondo effect. Phys. World, Jan., 33 (2001)Google Scholar
  184. 185.
    Kondo, J.: Sticking to my bush. J. Phys. Soc. Jpn. 74, 1 (2005)Google Scholar
  185. 186.
    Madhavan, V., et al.: Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance. Science 280, 567 (1998)Google Scholar
  186. 187.
    Li, J., et al.: Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893 (1998)Google Scholar
  187. 188.
    Újsághy, O., et al.: Theory of the fano resonance in the STM tunneling density of states due to a single kondo impurity. Phys. Rev. Lett. 85, 2557 (2000)Google Scholar
  188. 189.
    Plihal, M. and Gadzuk, J.: Nonequilibrium theory of scanning tunneling spectroscopy via adsorbate resonances: Nonmagnetic and Kondo impurities. Phys. Rev. B 63, 085404 (2001)Google Scholar
  189. 190.
    Cronenwett, S. M., et al.: A tunable Kondo effect in quantum dots. Science 281, 540 (1998)Google Scholar
  190. 191.
    Manoharan, H. C., et al.: Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512 (2000)Google Scholar
  191. 192.
    Nilius, N., et al.: Tailoring electronic properties of atomic chains assembled by STM. Appl. Phys. A 80, 951 (2005)Google Scholar
  192. 193.
    Giete, G. A., et al.: Kondo effect and STM spectra through ferromagnetic nanoclusters. Phys. Rev. B 66, 024431 (2002)Google Scholar
  193. 194.
    Jamneala, T., et al.: Kondo Response of a single antiferromagnetic Chromium trimer. Phys. Rev. Lett. 87, 25, 256804 (2001)Google Scholar
  194. 195.
    Madhavan, V., et al.: Observation of spectral evolution during the formation of a Ni2 Kondo molecule. Phys. Rev. B 66, 212411 (2002)Google Scholar
  195. 196.
    Wahl, P., et al.: Exchange interaction between single magnetic atoms. Phys. Rev. Lett. 98, 056601(2007)Google Scholar
  196. 197.
    Schneider, M. A., et al.: Kondo state of Co impurities at noble metal surfaces. Appl. Phys. A 80, 937 (2005)Google Scholar
  197. 198.
    Zhao, A., et al.: Controlling the Kondo effect on an adsorbed magnetic ion through its chemical bonding. Science 309, 1542 (2005)Google Scholar
  198. 199.
    Fu, Y.-S., Manipulating the Kondo resonance through quantum size effects. Phys. Rev. Lett. 99, 256601 (2007)Google Scholar
  199. 200.
    Nielsen, M. A. and Chuang, I. L.: Quantum computation and quantum information. University Press, Cambridge (2000)MATHGoogle Scholar
  200. 201.
    Burkard, G., et al.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070 (1999)Google Scholar
  201. 202.
    Yao, W., et al.: Nanodot-Cavity quantum electrodynamics and photon entanglement. Phys. Rev. Lett. 92, 217402 (2004)Google Scholar
  202. 203.
    Reimann, S. M. and Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002)Google Scholar
  203. 204.
    Schofield, A. J.: Non-Fermi liquids. Contemporary Phys. 40, 95 (1999)Google Scholar
  204. 205.
    Aharoni, A.: Introduction to the Theory of Ferromagnetism. University Press, Oxford (1996)Google Scholar
  205. 206.
    Kutner, R., et al.: Diffusion in concentrated lattice gases. II. Particles with attractive nearest-neighbor interaction on three-dimensional lattices. Phys. Rev. B 26, 2967 (1982)Google Scholar
  206. 207.
    Skomski, R., et al: Ruderman-Kittel-Kasuya-Yosida interactions between spin distributions of arbitrary shape. J. Appl. Phys. 85, 5890 (2000)Google Scholar
  207. 208.
    Mahadevan, P., et al.: Unusual directional dependence of exchange energies in GaAs diluted with Mn: Is the RKKY description relevant? Phys. Rev. Lett. 93, 177201-1-4 (2004)Google Scholar
  208. 209.
    Michalski, S. A. and Kirby, R. D. unpublished (2007)Google Scholar
  209. 210.
    Smart, J. S.: Effective field theories of magnetism. Sunders, Philadelphia (1966)Google Scholar
  210. 211.
    Skomski, R., et al.: Superparamagnetic ultrathin films. J. Appl. Phys. 81, 4710 (1997)Google Scholar
  211. 212.
    Das Sarma, S., et al.: Temperature-dependent magnetization in diluted magnetic semiconductors. Phys. Rev. B 67, 155201 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and Nebraska Center for Materials and NanoscienceUniversity of NebraskaLincolnUSA

Personalised recommendations