Solid-State Magnetic Sensors for Bioapplications

  • Goran Mihajlović
  • Stephan von Molnár


During the last decade, intensive research efforts have been expended to develop solid-state magnetic sensors for applications such as biomolecular sensing and single molecule detection. This chapter reviews sensors proposed thus far, including (a) GMR and spin valve sensors based on the giant magnetoresistance (GMR) effect; (b) magnetic tunnel junction (MTJ) sensors based on tunneling magnetoresistance (TMR); (c) anisotropic magnetoresistance (AMR) ring sensors and planar Hall effect sensors based on the AMR effect; (d) Hall sensors based on the classical Hall effect; and (e) giant magnetoimpedance (GMI) sensors based on the frequency-dependent variation of the skin depth in magnetic wires with field. Two different types of sensors are highlighted: the ones with large sensing areas (hundreds of μm2) intended to provide statistical counting of a large number of magnetic micro- or nanoparticles and the others with micro- or submicrometer-sized sensing areas that focus on single particle detection.


Hall Sensor Magnetic Tunnel Junction Single Molecule Detection Magnetic Label Stray Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abels, J. A., et al.: Single-molecule measurements of the persistence length of double-stranded RNA. Biophys. J. 88, 2737–2744 (2005)CrossRefGoogle Scholar
  2. 2.
    Baibich, M. N., et al.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)CrossRefGoogle Scholar
  3. 3.
    Baselt, D. R., et al.: A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998)CrossRefGoogle Scholar
  4. 4.
    Besse, P. A., et al.: Detection of single magnetic microbead using using a miniaturized silicon Hall sensor. Appl. Phys. Lett. 80, 4199–4201 (2002)CrossRefGoogle Scholar
  5. 5.
    Binasch, G., et al.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989)CrossRefGoogle Scholar
  6. 6.
    Boero, G., et al.: Micro-Hall devices: performances, technologies and applications. Sens. Actuators A 106, 314–320 (2003)CrossRefGoogle Scholar
  7. 7.
    Butler, W. H., et al.: Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416–054427 (2001)CrossRefGoogle Scholar
  8. 8.
    Cardoso, F. A., et al.: Diode/magnetic tunnel junction cell for fully scalable matrix based biochip. J. Appl. Phys. 99, 08B307–08B309 (2006)CrossRefGoogle Scholar
  9. 9.
    Chiriac, H., et al.: Microwire array for giant magneto-impedance detection of magnetic particles for biosensor prototype. J. Magn. Magn. Mater. 311, 425–428 (2007)CrossRefGoogle Scholar
  10. 10.
    Damsgaard, C. D., et al.: Exchange-biased planar Hall effect sensor optimized for biosensor applications. J. Appl. Phys. 103, 07A302 (2008)CrossRefGoogle Scholar
  11. 11.
    Djayaprawira, D. D., et al.: 230% room-temperature magnetoresistance in CoFeB/MgO/ CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 86, 092502 (2005)CrossRefGoogle Scholar
  12. 12.
    Ejsing, L., et al.: Planar Hall effect sensors for magnetic micro- and nanobead detection. Appl. Phys. Lett. 84, 4729–4731 (2004)CrossRefGoogle Scholar
  13. 13.
    Ejsing, L., et al.: Magnetic micro-bead detection using the planar Hall effect. J. Magn. Magn. Mater. 293, 677–684 (2005)CrossRefGoogle Scholar
  14. 14.
    Ferreira, H. A., et al.: Biodetection using magnetically labeled biomolecules and arrays of spin valve sensors (invited). J. Appl. Phys. 93, 7281–7286 (2003)CrossRefGoogle Scholar
  15. 15.
    Ferreira, H. A., et al.: Rapid DNA hybridization based on ac field focusing of magnetically labeled target DNA. Appl. Phys. Lett. 87, 013901 (2005)CrossRefGoogle Scholar
  16. 16.
    Ferreira, H. A., et al. Magnetoresistive DNA-chips based on ac field focusing of magnetic labels. J. Appl. Phys. 99, 08P105–08P107 (2006)CrossRefGoogle Scholar
  17. 17.
    Fonnum, G., et al.: Characterization of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005)CrossRefGoogle Scholar
  18. 18.
    Freitas, P. P., et al.: Magnetoresistive sensors. J. Phys.: Condens. Mat. 19, 165221 (2007)CrossRefGoogle Scholar
  19. 19.
    Graham, D. L., et al.: Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnol. Appl. J. Appl. Phys. 91, 7786–7788 (2002)CrossRefGoogle Scholar
  20. 20.
    Graham, D. L., et al.: High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens. Bioelectron. 18, 483–488 (2003)CrossRefGoogle Scholar
  21. 21.
    Hall, E. D.: On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879)CrossRefGoogle Scholar
  22. 22.
    Hauser, H., et al.: Giant magnetoimpedance sensors. IEEE Instrum. Meas. Mag. 4, 28–32 (2001)CrossRefGoogle Scholar
  23. 23.
    Kroemer, H.: The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review. Physica E 20, 196–203 (2004)CrossRefGoogle Scholar
  24. 24.
    Kurlyandskaya, G. V., et al.: Giant magnetoimpedance-based sensitive element as a model for biosensor. Appl. Phys. Lett. 82, 3053–3055 (2003)CrossRefGoogle Scholar
  25. 25.
    Kurlyandskaya, G. and Levit, V.: Magnetic Dynabeads detection by sensitive element based on giant magnetoimpedance. Biosens. Bioelectron. 20, 1611–1616 (2005)CrossRefGoogle Scholar
  26. 26.
    Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975)CrossRefGoogle Scholar
  27. 27.
    Landry, G., et al.: Characterization of single magnetic particles with In As quantum-well Hall devices. Appl. Phys. Lett. 85, 4693–4695 (2004)CrossRefGoogle Scholar
  28. 28.
    Li, G., et al.: Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. J. Appl. Phys. 93, 7557–7559 (2003)CrossRefGoogle Scholar
  29. 29.
    Li, G., et al.: Model and experiment of detecting multiple magnetic nanoparticles as biomolecular labels by spin valve sensors. IEEE Trans. Magn. 40, 3000–3002 (2004)CrossRefGoogle Scholar
  30. 30.
    Li, G., et al.: Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens. Actuators A 126, 98–106 (2006)CrossRefGoogle Scholar
  31. 31.
    Liandro, J., et al.: Quantitative digital detection of magnetic beads using pseudo-spin valve rings for multiplexed bioassays. Appl. Phys. Lett. 91, 203904 (2007)CrossRefGoogle Scholar
  32. 32.
    Mathon, J. and Umerski, A.: Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403–220406 (2001)CrossRefGoogle Scholar
  33. 33.
    Megens, M. and Prins, M.: Magnetic biochips: a new option for sensitive diagnostics. J. Magn. Magn. Mater. 293, 702–708 (2005)CrossRefGoogle Scholar
  34. 34.
    Meservey, R. and Tedrow, P. M.: Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994)CrossRefGoogle Scholar
  35. 35.
    Mihajlović, G., et al.: Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor. Appl. Phys. Lett. 87, 112502 (2005)CrossRefGoogle Scholar
  36. 36.
    Mihajlović, G., et al.: Submicrometer hall sensors for superparamagnetic nanoparticle detection. IEEE Trans. Magn. 43, 2400–2402 (2007a)CrossRefGoogle Scholar
  37. 37.
    Mihajlović, G., et al.: InAs quantum well Hall devices for room-temperature detection of single magnetic biomolecular labels. J. Appl. Phys. 102, 034506 (2007b)CrossRefGoogle Scholar
  38. 38.
    Millen, R. L., et al.: Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip scale detection strategy for immunosorbent assays. Anal. Chem. 77, 6581–6587 (2005)CrossRefGoogle Scholar
  39. 39.
    Miller, M. M., et al.: A DNA Array sensor utilizing magnetic microbeads and magnetoelectronic detection. J. Magn. Magn. Mater. 225, 138–144 (2001)CrossRefGoogle Scholar
  40. 40.
    Miller, M. M., et al.: Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A mode; for a magnetoresistance-based biosensor. Appl. Phys. Lett. 81, 2211–2213 (2002)CrossRefGoogle Scholar
  41. 41.
    Mulvaney, S. P., et al.: Rapid, femtomolar bioassays in complex matrices combining microfluidics and magnetoelectronics. Biosens. Bioelectron. 23, 191–200 (2007)CrossRefGoogle Scholar
  42. 42.
    Parkin, S. S. P., et al.: Giant tunneling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004)CrossRefGoogle Scholar
  43. 43.
    Rife, J. C., et al: A design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sens. Actuators A 107, 209–218 (2003)CrossRefGoogle Scholar
  44. 44.
    Sandhu, A., et al.: High sensitivity InSb ultra-thin film micro-hall sensors for bioscreening applications. Jpn. J. Appl. Phys. 43, L868–L870 (2004)CrossRefGoogle Scholar
  45. 45.
    Sandhu, A. and Handa, H.: Practical Hall sensors for biomedical instrumentation. IEEE Trans. Magn. 41, 4123–4127 (2005)CrossRefGoogle Scholar
  46. 46.
    Schotter, J., et al.: Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron. 19, 1149–1156 (2004)CrossRefGoogle Scholar
  47. 47.
    Shen, W., et al.: In situ detection of single micron-sized magnetic beads using magnetic tunnel junction sensors. Appl. Phys. Lett. 86, 253901 (2005)CrossRefGoogle Scholar
  48. 48.
    Shen, W., et al.: Detection of DNA labeled with magnetic nanoparticles using MgO-based magnetic tunnel junction sensors. J. Appl. Phys. 103, 07A306 (2008)CrossRefGoogle Scholar
  49. 49.
    Smit, J.: Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Physica (Amsterdam) 17, 612–627 (1951)CrossRefGoogle Scholar
  50. 50.
    Smith, C. H. and Schneider, R. W.: Low-field magnetic sensing with GMR sensors. NVE Research and Development Papers & Presentations. (1999). Accessed 10 January 2008
  51. 51.
    Tamanaha, C. R. and Whitman, L. J.: Magnetic labeling and detection of biomolecules. In: Buschow, K. H. J. (ed.) Encyclopedia of Materials: Science and Technology. Elsevier, Amsterdam (2004)Google Scholar
  52. 52.
    Thomson, W.: On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc London 8, 546 (1857)Google Scholar
  53. 53.
    Togawa, K., et al.: Detection of magnetically labeled DNA using pseudomorphic AlGaAs/InGaAs/GaAs heterostructure micro-Hall biosensors. J. Appl. Phys. 99, 08P103 (2006)CrossRefGoogle Scholar
  54. 54.
    Tondra, M., et al.: Model for detection of immobilized superparamagnetic nanosphere assay labels using giant magnetoresistive sensors. J. Vac. Sci. Technol. A 18, 1125–1129 (2000)CrossRefGoogle Scholar
  55. 55.
    Wang, D., et al.: 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn. 40, 2269–2271 (2004)CrossRefGoogle Scholar
  56. 56.
    Wang, S. X., et al.: Towards a magnetic microarray for sensitive diagnostics. J. Magn. Magn. Mater. 225, 731–736 (2005)CrossRefGoogle Scholar
  57. 57.
    Wood, D. K., et al.: Submicron giant magnetoresistive sensors for biological applications. Sens. Actuators A 120, 1–6 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  2. 2.MARTECH and Department of PhysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations