Skip to main content

Solid-State Magnetic Sensors for Bioapplications

  • Chapter
  • First Online:
Book cover Nanoscale Magnetic Materials and Applications

Abstract

During the last decade, intensive research efforts have been expended to develop solid-state magnetic sensors for applications such as biomolecular sensing and single molecule detection. This chapter reviews sensors proposed thus far, including (a) GMR and spin valve sensors based on the giant magnetoresistance (GMR) effect; (b) magnetic tunnel junction (MTJ) sensors based on tunneling magnetoresistance (TMR); (c) anisotropic magnetoresistance (AMR) ring sensors and planar Hall effect sensors based on the AMR effect; (d) Hall sensors based on the classical Hall effect; and (e) giant magnetoimpedance (GMI) sensors based on the frequency-dependent variation of the skin depth in magnetic wires with field. Two different types of sensors are highlighted: the ones with large sensing areas (hundreds of μm2) intended to provide statistical counting of a large number of magnetic micro- or nanoparticles and the others with micro- or submicrometer-sized sensing areas that focus on single particle detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Micrometer-sized ring sensors for bioapplications have been also reported more recently by the group from University of Cambridge [31]. Although these devices are geometrically similar, they are fabricated from a sandwich structure containing hard ferromagnet/normal metal/soft ferromagnet (Co/Cu/Py, for example) so that their operation is based on the GMR effect rather than AMR.

  2. 2.

    Similar sensors were also examined by the group from NRL [27].

References

  1. Abels, J. A., et al.: Single-molecule measurements of the persistence length of double-stranded RNA. Biophys. J. 88, 2737–2744 (2005)

    Article  Google Scholar 

  2. Baibich, M. N., et al.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  Google Scholar 

  3. Baselt, D. R., et al.: A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998)

    Article  Google Scholar 

  4. Besse, P. A., et al.: Detection of single magnetic microbead using using a miniaturized silicon Hall sensor. Appl. Phys. Lett. 80, 4199–4201 (2002)

    Article  Google Scholar 

  5. Binasch, G., et al.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989)

    Article  Google Scholar 

  6. Boero, G., et al.: Micro-Hall devices: performances, technologies and applications. Sens. Actuators A 106, 314–320 (2003)

    Article  Google Scholar 

  7. Butler, W. H., et al.: Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416–054427 (2001)

    Article  Google Scholar 

  8. Cardoso, F. A., et al.: Diode/magnetic tunnel junction cell for fully scalable matrix based biochip. J. Appl. Phys. 99, 08B307–08B309 (2006)

    Article  Google Scholar 

  9. Chiriac, H., et al.: Microwire array for giant magneto-impedance detection of magnetic particles for biosensor prototype. J. Magn. Magn. Mater. 311, 425–428 (2007)

    Article  Google Scholar 

  10. Damsgaard, C. D., et al.: Exchange-biased planar Hall effect sensor optimized for biosensor applications. J. Appl. Phys. 103, 07A302 (2008)

    Article  Google Scholar 

  11. Djayaprawira, D. D., et al.: 230% room-temperature magnetoresistance in CoFeB/MgO/ CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 86, 092502 (2005)

    Article  Google Scholar 

  12. Ejsing, L., et al.: Planar Hall effect sensors for magnetic micro- and nanobead detection. Appl. Phys. Lett. 84, 4729–4731 (2004)

    Article  Google Scholar 

  13. Ejsing, L., et al.: Magnetic micro-bead detection using the planar Hall effect. J. Magn. Magn. Mater. 293, 677–684 (2005)

    Article  Google Scholar 

  14. Ferreira, H. A., et al.: Biodetection using magnetically labeled biomolecules and arrays of spin valve sensors (invited). J. Appl. Phys. 93, 7281–7286 (2003)

    Article  Google Scholar 

  15. Ferreira, H. A., et al.: Rapid DNA hybridization based on ac field focusing of magnetically labeled target DNA. Appl. Phys. Lett. 87, 013901 (2005)

    Article  Google Scholar 

  16. Ferreira, H. A., et al. Magnetoresistive DNA-chips based on ac field focusing of magnetic labels. J. Appl. Phys. 99, 08P105–08P107 (2006)

    Article  Google Scholar 

  17. Fonnum, G., et al.: Characterization of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005)

    Article  Google Scholar 

  18. Freitas, P. P., et al.: Magnetoresistive sensors. J. Phys.: Condens. Mat. 19, 165221 (2007)

    Article  Google Scholar 

  19. Graham, D. L., et al.: Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnol. Appl. J. Appl. Phys. 91, 7786–7788 (2002)

    Article  Google Scholar 

  20. Graham, D. L., et al.: High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens. Bioelectron. 18, 483–488 (2003)

    Article  Google Scholar 

  21. Hall, E. D.: On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879)

    Article  Google Scholar 

  22. Hauser, H., et al.: Giant magnetoimpedance sensors. IEEE Instrum. Meas. Mag. 4, 28–32 (2001)

    Article  Google Scholar 

  23. Kroemer, H.: The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review. Physica E 20, 196–203 (2004)

    Article  Google Scholar 

  24. Kurlyandskaya, G. V., et al.: Giant magnetoimpedance-based sensitive element as a model for biosensor. Appl. Phys. Lett. 82, 3053–3055 (2003)

    Article  Google Scholar 

  25. Kurlyandskaya, G. and Levit, V.: Magnetic Dynabeads detection by sensitive element based on giant magnetoimpedance. Biosens. Bioelectron. 20, 1611–1616 (2005)

    Article  Google Scholar 

  26. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975)

    Article  Google Scholar 

  27. Landry, G., et al.: Characterization of single magnetic particles with In As quantum-well Hall devices. Appl. Phys. Lett. 85, 4693–4695 (2004)

    Article  Google Scholar 

  28. Li, G., et al.: Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. J. Appl. Phys. 93, 7557–7559 (2003)

    Article  Google Scholar 

  29. Li, G., et al.: Model and experiment of detecting multiple magnetic nanoparticles as biomolecular labels by spin valve sensors. IEEE Trans. Magn. 40, 3000–3002 (2004)

    Article  Google Scholar 

  30. Li, G., et al.: Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens. Actuators A 126, 98–106 (2006)

    Article  Google Scholar 

  31. Liandro, J., et al.: Quantitative digital detection of magnetic beads using pseudo-spin valve rings for multiplexed bioassays. Appl. Phys. Lett. 91, 203904 (2007)

    Article  Google Scholar 

  32. Mathon, J. and Umerski, A.: Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403–220406 (2001)

    Article  Google Scholar 

  33. Megens, M. and Prins, M.: Magnetic biochips: a new option for sensitive diagnostics. J. Magn. Magn. Mater. 293, 702–708 (2005)

    Article  Google Scholar 

  34. Meservey, R. and Tedrow, P. M.: Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994)

    Article  Google Scholar 

  35. Mihajlović, G., et al.: Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor. Appl. Phys. Lett. 87, 112502 (2005)

    Article  Google Scholar 

  36. Mihajlović, G., et al.: Submicrometer hall sensors for superparamagnetic nanoparticle detection. IEEE Trans. Magn. 43, 2400–2402 (2007a)

    Article  Google Scholar 

  37. Mihajlović, G., et al.: InAs quantum well Hall devices for room-temperature detection of single magnetic biomolecular labels. J. Appl. Phys. 102, 034506 (2007b)

    Article  Google Scholar 

  38. Millen, R. L., et al.: Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip scale detection strategy for immunosorbent assays. Anal. Chem. 77, 6581–6587 (2005)

    Article  Google Scholar 

  39. Miller, M. M., et al.: A DNA Array sensor utilizing magnetic microbeads and magnetoelectronic detection. J. Magn. Magn. Mater. 225, 138–144 (2001)

    Article  Google Scholar 

  40. Miller, M. M., et al.: Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A mode; for a magnetoresistance-based biosensor. Appl. Phys. Lett. 81, 2211–2213 (2002)

    Article  Google Scholar 

  41. Mulvaney, S. P., et al.: Rapid, femtomolar bioassays in complex matrices combining microfluidics and magnetoelectronics. Biosens. Bioelectron. 23, 191–200 (2007)

    Article  Google Scholar 

  42. Parkin, S. S. P., et al.: Giant tunneling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004)

    Article  Google Scholar 

  43. Rife, J. C., et al: A design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sens. Actuators A 107, 209–218 (2003)

    Article  Google Scholar 

  44. Sandhu, A., et al.: High sensitivity InSb ultra-thin film micro-hall sensors for bioscreening applications. Jpn. J. Appl. Phys. 43, L868–L870 (2004)

    Article  Google Scholar 

  45. Sandhu, A. and Handa, H.: Practical Hall sensors for biomedical instrumentation. IEEE Trans. Magn. 41, 4123–4127 (2005)

    Article  Google Scholar 

  46. Schotter, J., et al.: Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron. 19, 1149–1156 (2004)

    Article  Google Scholar 

  47. Shen, W., et al.: In situ detection of single micron-sized magnetic beads using magnetic tunnel junction sensors. Appl. Phys. Lett. 86, 253901 (2005)

    Article  Google Scholar 

  48. Shen, W., et al.: Detection of DNA labeled with magnetic nanoparticles using MgO-based magnetic tunnel junction sensors. J. Appl. Phys. 103, 07A306 (2008)

    Article  Google Scholar 

  49. Smit, J.: Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Physica (Amsterdam) 17, 612–627 (1951)

    Article  Google Scholar 

  50. Smith, C. H. and Schneider, R. W.: Low-field magnetic sensing with GMR sensors. NVE Research and Development Papers & Presentations. http://www.nve.com/Downloads/lowfield.pdf (1999). Accessed 10 January 2008

  51. Tamanaha, C. R. and Whitman, L. J.: Magnetic labeling and detection of biomolecules. In: Buschow, K. H. J. (ed.) Encyclopedia of Materials: Science and Technology. Elsevier, Amsterdam (2004)

    Google Scholar 

  52. Thomson, W.: On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc London 8, 546 (1857)

    Google Scholar 

  53. Togawa, K., et al.: Detection of magnetically labeled DNA using pseudomorphic AlGaAs/InGaAs/GaAs heterostructure micro-Hall biosensors. J. Appl. Phys. 99, 08P103 (2006)

    Article  Google Scholar 

  54. Tondra, M., et al.: Model for detection of immobilized superparamagnetic nanosphere assay labels using giant magnetoresistive sensors. J. Vac. Sci. Technol. A 18, 1125–1129 (2000)

    Article  Google Scholar 

  55. Wang, D., et al.: 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn. 40, 2269–2271 (2004)

    Article  Google Scholar 

  56. Wang, S. X., et al.: Towards a magnetic microarray for sensitive diagnostics. J. Magn. Magn. Mater. 225, 731–736 (2005)

    Article  Google Scholar 

  57. Wood, D. K., et al.: Submicron giant magnetoresistive sensors for biological applications. Sens. Actuators A 120, 1–6 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Mihajlović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mihajlović, G., von Molnár, S. (2009). Solid-State Magnetic Sensors for Bioapplications. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_23

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics