Advertisement

Nano-Magnetophotonics

  • Mitsuteru Inoue
  • Alexander Khanikaev
  • Alexander Baryshev
Chapter

Abstract

Data-processing and optical communication systems that allow controlling intensity and polarization state of light via external magnetic fields require compact, efficient, and low-cost magnetic materials. It is these properties of magnetic materials that are the subject of the present chapter. Owing to their strong linear and nonlinear magneto-optical responses along with unique optical characteristics, magnetophotonic crystals have already found applications in electronics. As a particular example, film-type optical isolator/circulator devices have been proposed. Recent renewed interest in magneto-optical spatial light modulators has resulted from the development of optical volumetric recording using holography, particularly, collinear holography. Here we focus on reviewing experimental and theoretical studies of light coupling to various artificial magnetic nanostructured media and nanocomposites providing strong magneto-optical responses and having miniature dimensions. We first examine properties of different types of MPCs. Then, the magnetorefractive effect of various materials is considered, an enhancement of the magnetorefractive response is demonstrated for structures fabricated in the use of the magnetophotonic crystals’ concept. Finally, the influence of localized surface plasmon resonances on optical and magneto-optical properties of bismuth-substituted yttrium iron garnet films impregnated with nanoparticles of noble metals is discussed. Another promising way to enhance Faraday rotation is to exploit the regime of extraordinary transmission for systems comprising a perforated noble-metal film supporting transmission resonances and a magnetic material.

Keywords

Faraday Rotation Transverse Electric Defect Layer Extraordinary Optical Transmittance Kerr Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank O. A. Aktsipetrov, A. P. Vinogradov, A. B. Granovskii, A. A. Fedyanin, R. Fujikawa, A. M. Merzlikin, and H. Uchida for many discussions on the topics covered here and for their collaboration.

References

  1. 1.
    Yablonovitch, E., Phys. Rev. Lett. 58, 2059–2062 (1987)Google Scholar
  2. 2.
    Kato, H., Matsushita, T., Takayama, A., et al.: Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices, IEEE Trans. Magn. 38, 3246–3248 (2002)Google Scholar
  3. 3.
    Park, H. J., Cho, J. K., Nishimura, K., Inoue, M.: Magneto-optic spatial light modulator for volumetric digital recording system, Jpn. J. Appl. Phys. 41, 1813–1816 (2002)Google Scholar
  4. 4.
    Joannopoulos, J. D., Meade, R., Winn, J.: Photonic Crystals. Princeton University Press, Princeton (1995)MATHGoogle Scholar
  5. 5.
    Fujii, T., Inoue, M.: Photonic Kessho (Japanese translation version). Corona Publishing Inc., Tokyo (2000)Google Scholar
  6. 6.
    Lopes, C.: Materials aspects of photonic crystals. Adv. Mater. 15, 1679–1704 (2003)Google Scholar
  7. 7.
    Lourtioz, J.-M., Benisty, H., Berger, V., Gerard, J.-M., Maystre, D., Tchelnokov, A.: Photonic Crystals: Towards Nanoscale Photonic Devices. Springer, Berlin (2005)MATHGoogle Scholar
  8. 8.
    Inoue, M., Yamamoto, T., Isamoto, K., Fujii, T.: Effect of structural irregularity on propagation properties of optical waves in discontinuous magneto-optical media with one-dimensional quasirandom array structures. J. Appl. Phys. 79, 5988–5990 (1996)Google Scholar
  9. 9.
    Inoue, M., Fujii, T.: A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structures. J. Appl. Phys. 81, 5659–5661 (1997)Google Scholar
  10. 10.
    Kavokin, A. V., Vladimirova, M. R., Kaliteevski, M. A., Lyngnes, O., Berger, J. D., Gibbs, H. M., Khitrova G.: Resonant Faraday rotation in a semiconductor microcavity. Phys. Rev. B 56, 1087–1090 (1997)Google Scholar
  11. 11.
    Inoue, M., Arai, K. I., Fujii, T., Abe, M.: Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers. J. Appl. Phys. 83, 6768–6770 (1998)Google Scholar
  12. 12.
    Inoue, M., Fujii, T., Arai, K. I., Abe, M.: Huge enhancement of magneto-optical Faraday effect in YIG films with disordered multilayer structures. J. Magn. Soc. Jpn. 22, 141–143 (1998)Google Scholar
  13. 13.
    Steel, M. J., Levy, M., Osgood, R. M.: Photonic bandgaps with defects and the enhancement of Faraday rotation. J. Lightwave Technol. 18, 1297–1308 (2000)Google Scholar
  14. 14.
    Gates, B., Xia, Y.: Photonic crystals that can be addressed with an external magnetic field. Adv. Mater 13, 1605–1608 (2001)Google Scholar
  15. 15.
    Kato, H., Matsushita, T., Takayama, A., Egawa, M., Nishimura, K., Inoue, M.: Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals. J. Appl. Phys. 93, 3906–3911 (2003)Google Scholar
  16. 16.
    Kahl, S., Grishin, A. M.: Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal. Appl. Phys. Lett. 84, 1438–1440 (2004)Google Scholar
  17. 17.
    Lyubchanskii, I. L., Dadoenkova, N. N., Lyubchanskii, M. I., Shapovalov, E. A., Lakhtakia, A., Rasing, T.: Bigyrotropic photonic crystals. Proc. SPIE 5508, 184 (2004)Google Scholar
  18. 18.
    Jalali, A. A., Friberg, A. T.: Faraday rotation in two-dimensional magneto-optic photonic crystal. Opt. Com. 253, 145–150 (2005)Google Scholar
  19. 19.
    Li, R., Levy, M.: Bragg grating magnetic photonic crystal waveguides. Appl. Phys. Lett. 86, 251102 (2005); Erratum: Bragg grating magnetic photonic crystal waveguides [Appl. Phys. Lett. 86, 251102 (2005)]. App. Phys. Lett. 87, 269901/1 (2005)Google Scholar
  20. 20.
    Levy, M., Li, R.: Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals. Appl. Phys. Lett. 89, 121113/3 (2006)Google Scholar
  21. 21.
    Wang, Z., Fan, S.: Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett. 30, 1989–1991 (2005)Google Scholar
  22. 22.
    Wang, Z., Fan, S.: Magneto-optical defects in two-dimensional photonic crystals. Appl. Phys. B 81, 369–375 (2005)Google Scholar
  23. 23.
    Kim, J. B., Lee, G. J., Lee, Y. P., Rhee, J. Y., Kim, K. W., Yoon, C. S.: One-dimensional magnetic grating structure made easy. Appl. Phys. Lett. 89, 151111 (2006)Google Scholar
  24. 24.
    Vinogradov, A. P., Dorofeenko, A. V., Erokhin, S. G., et al.: Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys. Rev. B 74, 045128/8 (2006)Google Scholar
  25. 25.
    Khanikaev, A. B., Baryshev, A. V., Inoue, M, et al.: Two-dimensional magnetophotonic crystal: Exactly solvable model. Phys. Rev. B 72, 035123/9 (2005)Google Scholar
  26. 26.
    Inoue, M., Fujikawa, R., Baryshev, A., et al.: Magnetophotonic crystals. J. Phys. D: Appl. Phys. 39, R151–R161 (2006)Google Scholar
  27. 27.
    Merzlikin, A. M., Vinogradov, A. P., Inoue, M., et al.: The Faraday effect in two-dimensional magneto-photonic crystals. J. Magn. Magn. Mater. 300, 108–111 (2006)Google Scholar
  28. 28.
    Merzlikin, A. M., Vinogradov, A. P.: Superprism effect in 1D photonic crystal. Opt. Commun. 259, 700–703 (2006)Google Scholar
  29. 29.
    Merzlikin, A. M., Vinogradov, A. P., Dorofeenko, A. V., et al.: Controllable Tamm states in magnetophotonic crystal. Physica B: Phys. Condens. Mat. 394, 277–280 (2007)Google Scholar
  30. 30.
    Levy, M., Jalali, A. A.: Band structure and Bloch states in birefringent one-dimensional magnetophotonic crystals: An analytical approach. J. Opt. Soc. Am. B 24, 1603–1609 (2007)MathSciNetGoogle Scholar
  31. 31.
    Khartsev, S. I., Grishin A. M.: High performance [Bi3Fe5O12/Sm3Ga5O12]m magneto-optical photonic Crystals. J. Appl. Phys. 101, 053906/6 (2007)Google Scholar
  32. 32.
    Lyubchanskii, I. L., Dadoenkova, N. N., Lyubchanskii, M. I., et al.: Response of two-defect magnetic photonic crystals to oblique incidence of light: Effect of defect layer variation. J. Appl. Phys. 100, 096110/3 (2006)Google Scholar
  33. 33.
    Young, D., Tsai, C.S.: Bismuth-doped yttrium iron garnet guided-wave magnetooptic Bragg cells and applications. Ultrasonics Symp. Proc. IEEE 1, 521–523 (1989)Google Scholar
  34. 34.
    Jonsson, F., Flytzanis, C.: Spectral windowing with chirped magneto-optical Bragg gratings. J. Opt. Soc. Am. B 22, 293–298 (2005)Google Scholar
  35. 35.
    van Albada, M. P., Lagendijk, A.: Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985)Google Scholar
  36. 36.
    Wolf, P. E., Maret, G.: Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985)Google Scholar
  37. 37.
    Atkinson, R., Lissberger, P. H.: Correct formulation of first-order magneto-optical effects in multilayer thin films in terms of characteristic matrices and derivation of a related superposition principle. J. Mag. Magn. Mat. 118, 271–277 (1993)Google Scholar
  38. 38.
    Schubert, M., Tiwald, T. E., Woollam, J.A.: Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry. Appl. Opt. 38, 177–187 (1999)Google Scholar
  39. 39.
    Yeh, P.: Optical waves in layered media. J. Wiley & Sons, New York (1988)Google Scholar
  40. 40.
    Sakoda, K.: Optical properties of Photonic Crystals. Springer, Berlin (2001)Google Scholar
  41. 41.
    Nishizawa, H., Nakayama, T.: Magneto-optic anisotropy effect on photonic band structure. J. Phys. Soc. Jpn. 66, 613–617(1997)Google Scholar
  42. 42.
    Zvezdin, A. K., Belotelov, V. I.: Magnetooptical properties of two dimensional photonic crystals. Eur. Phys. J. B 37, 479–487 (2004)Google Scholar
  43. 43.
    Khanikaev, A. B., Inoue, M., Granovsky, A. B.: TM-TE hybridization and tunable refraction in magnetophotonic crystals. J. Magn. Magn. Mat. 300, 104–107 (2006)Google Scholar
  44. 44.
    Ohtaka, K.: Energy-band of photons and low-energy photon diffraction. Phys. Rev. B 19, 5057–5067 (1979)Google Scholar
  45. 45.
    Lamb, W., Wood, D. M., Ashkroft, N. W.: Long-wavelength electromagnetic propagation in heterogeneous media. Phys. Rev. B 21, 2248–2266 (1980)Google Scholar
  46. 46.
    Wang, X., Zang, X.-G., Yu, Q., Harmon, B. N.: Multiple-scattering theory for electromagnetic waves. Phys. Rev. B 47, 4161–4167 (1992)Google Scholar
  47. 47.
    Stefanou, N., Yannopapas, V., Modinos, A.: Heterostructures of photonic crystals: Frequency bands and transmission coefficients. Comput. Phys. Commun. 113, 49–77 (1998); Stefanou, N., Yannopapas, V., Modinos, A.: MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals. ibid. 132, 189–196 (2000)MATHGoogle Scholar
  48. 48.
    Lin, Z., Chui, S. T.: Electromagnetic scattering by optically anisotropic magnetic particle. Phys. Rev. E. 69, 056614 (2004)Google Scholar
  49. 49.
    Fedyanin, A. A., Yoshida, T., Nishimura, K. et al.: Magnetization-induced second harmonic generation in magnetophotonic microcavities based on ferrite garnets. JETP 76, 527–531 (2002)Google Scholar
  50. 50.
    Dolgova, T. V., Fedyanin, A. A., Aktsipetrov, O. A. et al.: Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals. J. Appl. Phys. 95, 7330–7332 (2004)Google Scholar
  51. 51.
    Fedyanin, A. A., Aktsipetrov, O. A., Kobayashi, D. et al.: Enhanced Faraday and nonlinear magneto-optical Kerr effects in magnetophotonic crystals. J. Magn. Magn. Mater. 282, 256–259 (2004)Google Scholar
  52. 52.
    Fedyanin, A. A., Yoshida, T., Nishimura, K. et al.: Nonlinear magneto-optical Kerr effect in gyrotropic photonic band gap structures: Magneto-photonic microcavities. J. Magn. Magn. Mater. 258, 96–98 (2003)Google Scholar
  53. 53.
    Murzina, T. V., Kapra, R. V., Dolgova, T. V. et al.: Magnetization-induced second-harmonic generation in magnetophotonic crystals. Phys. Rev. B 70, 012407/4 (2004)Google Scholar
  54. 54.
    Aktsipetrov, O. A., Murzina, T. V., Kim, E. M. et al.: Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles. J. Opt. Soc. Am. B 22, 138–147 (2005)Google Scholar
  55. 55.
    Aktsipetrov, O. A., Dolgova, T. V., Fedyanin, A. A. et al.: Magnetization-induced second- and third-harmonic generation in magnetophotonic crystals. J. Opt. Soc. Am. B 22, 176–186 (2005)Google Scholar
  56. 56.
    Murzina, T. V., Kim, E. M., Kapra, R. V., et al.: Magnetophotonic crystals based on yttrium-iron-garnet infiltrated opals: Magnetization-induced second-harmonic generation. J. Appl. Phys. 88, 022501/3 (2006)Google Scholar
  57. 57.
    Granovsky, A. B., Inoue, M.: Spin-dependent tunnelling at infrared frequencies: Magnetorefractive effect in magnetic nanocomposites. J. Magn. Magn. Mater. 272–276(Suppl. 1), E1601–E1605 (2004)Google Scholar
  58. 58.
    Granovsky, A. B., Bykov, I. V., Gan’shina, E. A., et al.: Magnetorefractive effect in magnetic nanocomposites. JETP 96, 1104–1112 (2003)Google Scholar
  59. 59.
    Mennicke, R. T., Bozec, D., Kravets, V. G., et al.: Modelling the magnetorefractive effect in giant magnetoresistive granular and layered materials. J. Magn. Magn. Mater. 303, 92–110 (2006)Google Scholar
  60. 60.
    Rinkevich, A. B., Romashev, L. N., Ustinov, V. V.: Radiofrequency magnetoresistance of Fe/Cr superlattices. JETP 90, 834–841 (2000)Google Scholar
  61. 61.
    Ustinov, V. V., Rinkevich, A. B., Romashev, L. N., et al.: Giant magnetoresistive effect in Fe/Cr multilayers in a wide range of frequencies. Phys. Met. Metallogr. 96, 291–297 (2003)Google Scholar
  62. 62.
    Yurasov, A. N., Granovsky, A. B., Tarapov, S. P., Clerc, J. P.: High-frequency magnetoimpedance in nanocomposites. J. Magn. Magn. Mater. 300, E52–E54 (2006)Google Scholar
  63. 63.
    Auslender, M. I., Barsukova, E. V., Bebenin, N. G., et al.: Absorption spectrum of n- and p-type single crystals of ferromagnetic semiconductor HgCr2Se4 in a magnetic field. JETP 68, 139–142 (1989)Google Scholar
  64. 64.
    van Driel, J., de Boer, F. R., Coehoorn, R., et al.: Magnetorefractive and magnetic-linear-dichroism effect in exchange-biased spin valves. Phys. Rev. 61, 15321/6 (2000)Google Scholar
  65. 65.
    Granovskii, A. B., Gan’shina, E. A., Yurasov, A. N., et al.: Magnetorefractive effect in nanostructures, manganites, and magnetophotonic crystals based on these materials. J. Comm. Tech. and Electronics 52, 1065–1071 (2007)Google Scholar
  66. 66.
    Jacquet, J. C., Valet, T.: A new magnetooptical effect discovered on magnetic multilayers: The magnetorefractive effect. In: Marinero, E. (ed.) Magnetic Ultrathin Films, Multilayers and Surfaces. Pittsburgh, PA: Mat. Res. Soc. Symp. Proc. 384, pp. 477–490 (1995)Google Scholar
  67. 67.
    Kubrakov, N. F., Zvezdin, A. K., Zvezdin, K. A., et al.: New intensity magneto-optical effect in materials exhibiting giant magnetoresistance. JETP 87, 600–607 (1998)Google Scholar
  68. 68.
    Uran, S., Grimsditch, M., Fullerton, E., Bader, S. D.: Infrared spectra of giant magnetoresistance Fe/Cr/Fe trilayers. Phys. Rev. 57, 2705/4 (1998)Google Scholar
  69. 69.
    Baxter, R. X., Pettifor, D. G., Tsymbal, E. Y., et al.: Importance of the interband contribution to the magneto-refractive effect in Co/Cu multilayers. J. Phys.: Cond. Mat. 15, L695–L702 (2003)Google Scholar
  70. 70.
    Vopsaroiu, M., Bozec, D., Matthew, J. A. D., et al.: Contactless magnetoresistance studies of Co/Cu multilayers using the infrared magnetorefractive effect. Phys. Rev. B 70, 214423/7 (2004).Google Scholar
  71. 71.
    Granovskii, A. B., Kuz’michev, M. V., Klerk, J. P.: Optical and magnetooptical properties of granular alloys with giant magnetoresistance in the IR region of the spectrum. JETP 89, 955–959 (1999)Google Scholar
  72. 72.
    Kravets, V. G., Bozec, D., Matthew, J. A. D., et al.: Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films. Phys. Rev. B 65, 054415/9 (2002)Google Scholar
  73. 73.
    Gester, M., Schlapka, A., Pickford, R. A., et al.: Contactless measurement of giant magnetoresistance in CoAg granular films using infrared transmission spectroscopy. J. Appl. Phys. 85, 5045–5047 (1999)Google Scholar
  74. 74.
    Bykov, I. V., Gan’shina, E. A., Granovskii, A. B., et al.: Magnetorefractive effect in granular alloys with tunneling magnetoresistance. Phys. Solid State 47, 281–286 (2005)Google Scholar
  75. 75.
    Bozec, D., Kravets, V. G., Matthew, J. A. D., et al.: Infrared reflectance and magnetorefractive effects in metal–insulator CoFe–Al2O3 granular films. J. Appl. Phys. 91, 8795–8797 (2002)Google Scholar
  76. 76.
    Granovsky, A. B., Inoue, M., Clerk, J. P., Yurasov, A. N.: Magnetorefractive effect in nanocomposites: Dependence on the angle of incidence and on light polarization. Phys. Solid State 46, 498–501 (2004)Google Scholar
  77. 77.
    Granovsky, A., Kozlov, A., Yurasov, A., et al.: Magnetorefractive effect in magnetic nanocomposites in reflection: Dependencies on incident angle and polarization of light. In: Aktas, B., Tagirov, L., Mikailov, F. (eds.) Nanostructured Magnetic Materials and Their Applications, pp. 433–440. Kluwer Academic Pub., London (2004)Google Scholar
  78. 78.
    Loshkareva, N. N., Sukhorukov, Yu., P., Gizhevskii, B. A., et al.: Red shift of absorption edge and nonmetal-metal transition in single crystals La1–xSrxMnO3 (x = 0.1, 0.2, 0.3). Phys. Stat. Solidi A 164, 863–867 (1997)Google Scholar
  79. 79.
    Sukhorukov, Yu., P., Nosov, A. P., Loshkareva, N. N., et al.: The influence of magnetic and electronic inhomogeneities on magnetotransmission and magnetoresistance of La0.67Sr0.33MnO3 films. J. Appl. Phys. 97, 103710/5 (2005)Google Scholar
  80. 80.
    Melnikov, O. V., Sukhorukov, Yu., P., Telegin, A. V., et al.: The evolution of magneto-transport and magneto-optical properties of thin La0.8Ag0.1MnO3+δ films possessing the in-plane variant structure as a function of the film thickness. J. Phys.: Cond. Mat. 18, 3753–3765 (2006)Google Scholar
  81. 81.
    Sukhorukov, Yu., P., Telegin, A. V., Gan’shina, E. A., et al.: Tunneling of spin-polarized charge carriers in La0.8Ag0.1MnO3+δ film with variant structure: Magnetotransport and magnetooptical data. Tech. Phys. Lett. 31, 484–487 (2005)Google Scholar
  82. 82.
    Sukhorukov, Yu., P., Gan’shina, E. A., Belevtsev, B. I., et al.: Giant change in infrared light transmission in La0.67Ca0.33MnO3 film near the Curie temperature. J. Appl. Phys. 91, 4403–4408 (2002)Google Scholar
  83. 83.
    Marques, R. F. C., Abernethy, P. R., Matthew, J. A. D., et al.: Contactless measurement of colossal magnetoresistance in La1-xSrxMnO3 using the infrared magnetorefractive effect. J. Magn. Magn. Mater. 272–276, 1740–1741 (2004)Google Scholar
  84. 84.
    Inoue, M., Fujikawa, R., Baryshev, A., et al.: Magnetophotonic crystals. J. Phys. D: Appl. Phys 39, R151–R161 (2006)Google Scholar
  85. 85.
    Vinogradov, A. P., Erokhin, S. G., Granovskii, A. B., Inoue, M.: The polar Kerr effect in multilayer systems (magnetophotonic crystals). J. Commun. Technol. Electron. 49, 682–685 (2004)Google Scholar
  86. 86.
    Vinogradov, A. P., Erokhin, S. G., Granovskii, A. B., Inoue, M.: Investigation of the Faraday effect in multilayer one-dimensional structures. J. Commun. Technol. Electron. 49, 88–90 (2004)Google Scholar
  87. 87.
    Okimoto, Y., Katsufuji, T., Ishikawa, T., et al.: Variation of electronic structure in La1-xSrxMnO3 (0<x<0.3) as investigated by optical conductivity spectra. Phys. Rev. B 55, 4206–4214 (1997)Google Scholar
  88. 88.
    Nomerovannaya, L. V., Makhnev, A. A., Rumyantsev, A. Yu.: Evolution of the optical properties of single-crystal La1 xSrxMnO3. Phys. Solid State 41, 1322–1326 (1999)Google Scholar
  89. 89.
    Boriskina, Yu., V., Erokhin, S. G., Vinogradov, A. P., et al.: Enhancement of the magnetorefractive effect in magnetophotonic crystals. Phys. Solid State 48, 717–721 (2006)Google Scholar
  90. 90.
    Zvezdin, A. K., Belotelov, V. I.: Magnetooptical properties of two dimensional photonic crystals. Eur. Phys. J. B 37, 479–487 (2004)Google Scholar
  91. 91.
    Vinogradov A. P., Merzlikin, A. M.: Frequency dependence of localization length of an electromagnetic wave in a one-dimensional system. Physica B 338, 126–131 (2003)Google Scholar
  92. 92.
    Feil, H., Haas, C.: Magneto-optical Kerr effect, enhanced by the plasma resonance of charge carriers. Phys. Rev. Lett. 58, 65–68 (1987)Google Scholar
  93. 93.
    Xia, T. K., Hui, P. M., Stroud, D.: Theory of Faraday rotation by magnetic composites. J. Appl. Phys. 67, 2736–2741 (1990)Google Scholar
  94. 94.
    Katayama, T., Suzuki, Y., Awano, H., Nishihara, Y., Koshizuka, N.: Enhancement of the magneto-optical Kerr rotation in Fe/Cu bilayered films. Phys. Rev. Lett. 60, 1426–1429 (1988)Google Scholar
  95. 95.
    Safarov, V. I., Kosobukin, V. A., Hermann, C., Lampel, G., Peretti, J.: Magneto-optical effects enhanced by surface plasmons in metallic multilayer films. Phys. Rev. Lett. 73, 3584–3587 (1994).Google Scholar
  96. 96.
    Hermann, C., Kosobukin, V. A., Lampel, G., Peretti, J., Safarov, V. I., Bertrand, P.: Surface-enhanced magneto-optics in metallic multilayer films. Phys. Rev. B 64, 235422/11 (2001)Google Scholar
  97. 97.
    Kochergin, V. E., Toporov, A. Yu., Valeiko, M.: Polariton enhancement of the Faraday magnetooptic effect. JETP Lett. 68, 400–403 (1998)Google Scholar
  98. 85.
    Pufall, M. R., Berger, A., Schultz, S.: Measurement of the scattered light magneto-optical Kerr effect from plasmon-resonant Ag particles near a magnetic film. J. Appl. Phys. 81, 5689–5691 (1997)Google Scholar
  99. 99.
    Li, Y., Zhang, Q., Nurmikko, A. V., Sun, S.: Enhanced magnetooptical response in Dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Lett. 5, 1689–1692 (2005)Google Scholar
  100. 100.
    Shemer, G., Markovich, G.: Enhancement of magneto-optical effects in magnetite nanocrystals near gold surfaces. J. Phys. Chem. B 106, 9195–9197 (2002)Google Scholar
  101. 101.
    Kosobukin, V. A.: Magneto-optics via the near field. Surf. Science 406, 32–47 (1998)Google Scholar
  102. 102.
    Smith, D. A., Stokes, K. L.: Discrete dipole approximation for magnetooptical scattering calculations. Opt. Exp. 14, 5746–5754 (2006)Google Scholar
  103. 103.
    Belotelov, V. I., Doskolovich, L. L., Zvezdin, A. K.: Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Phys. Rev. Lett. 98, 077401/4 (2007)Google Scholar
  104. 104.
    Battula, A., Chen, S., Lu, Y., Knize, R. J., Reinhardt, K.: Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field. Opt. Lett. 32, 2692–2694 (2007)Google Scholar
  105. 105.
    Tomita, S., Kato, T., Tsunashima, S., et al.: Magneto-optical Kerr effects of Yttrium-Iron Garnet thin films incorporating gold nanoparticles. Phys. Rev. Lett. 96, 167402/4 (2006)Google Scholar
  106. 106.
    Kosobukin, V. A.: Surface-enhanced magneto-optical effects in ferromagnetic superlattices. Solid State Com. 101, 497–501 (1997)Google Scholar
  107. 107.
    Jen, S. U., Chen, K. C.: Enhancement of polar Kerr effect by forming Au nanoparticles on Ni surface. J. Appl. Phys. 97, 10M311/3 (2005)Google Scholar
  108. 108.
    Bohrein, C. F., Huffman, D. R.: Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York (1983)Google Scholar
  109. 109.
    Gasparian, V., Ortuno, M., Ruiz, J., Cuevas, E.: Faraday rotation and complex-valued traversal time for classical light waves. Phys. Rev. Lett. 75, 2312–2315 (1995)Google Scholar
  110. 110.
    Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P. B., Uchida, H., Aktsipetrov, O., Fedyanin, A., Murzina, T., Granovsky, A.: Magnetophotonic crystals. J. Phys. В: Appl. Phys. 39, R151–R161 (2006)Google Scholar
  111. 111.
    Ebbssen, T. W., Lezec, H. J., Ghaemi, H. F., et al.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)Google Scholar
  112. 112.
    Pendry, J. B., Martin-Moreno, L., Garcia-Vidal, F. J.: Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)Google Scholar
  113. 113.
    Porto, J. A., Martin-Moreno, L., Garcia-Vidal, F. J.: Optical bistability in subwavelength slit apertures containing nonlinear media. Phys. Rev. B 70, 081402(R)/4 (2004)Google Scholar
  114. 114.
    Fujikawa, R., Baryshev, A. V., Kim, J., et al.: Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi:YIG–Au nanostructure. J. Appl. Phys. 103, 07D301/3 (2008)Google Scholar
  115. 115.
    Rechberger, W., Hohenau, A., Leitner, A., et al.: Optical properties of two interacting gold nanoparticles. Opt. Comm. 220, 137–141 (2003)Google Scholar
  116. 116.
    Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., et al.: Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)Google Scholar
  117. 117.
    Khanikaev, A. B., Baryshev, A. V., Fedyanin, A. A., et al.: Anomalous Faraday effect of a system with extraordinary optical transmittance. Opt. Exp. 15, 6612–6622 (2007)Google Scholar
  118. 118.
    Hui, P. M., Stroud, D.: Theory of Faraday rotation by dilute suspensions of small particles. Appl. Phys. Lett. 50, 950–952 (1987)Google Scholar
  119. 119.
    Khanikaev, A. B., Baryshev, A. V., Fedyanin, A. A., et al.: Optical properties of nanostructured metallic films containing magnetic media. Proc. SPIE 6641, 66411H/8 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mitsuteru Inoue
    • 1
  • Alexander Khanikaev
    • 1
  • Alexander Baryshev
    • 1
  1. 1.Toyohashi University of TechnologyToyohashi AichiJapan

Personalised recommendations