Applications of Magnetic Nanoparticles in Biomedicine



In recent years, magnetic nanoparticles have played an increasing role in biomedical applications and have been the subject of extensive research investigations. Physical properties, including nanoparticle size, composition, and surface chemistry, vary widely and influence their biological and pharmacological properties and, ultimately, their clinical applications. Among different magnetic nanoparticles, superparamagnetic iron oxide nanoparticles (SPIOs) were found nontoxic and used as magnetic resonance imaging (MRI) contrast agents, in molecular and cellular imaging applications. SPIOs are used in detection of liver metastases, metastatic lymph nodes, and inflammatory and/or neural degenerative diseases. In addition, drug delivery via magnetic targeting, hyperthermia, and labeling/ tracking of stem cells have also been explored as potential therapeutic options.


Experimental Autoimmune Encephalomyelitis Magnetic Nanoparticles Iron Oxide Nanoparticles Malignant Pleural Mesothelioma Silica Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







dioctyl sulfosuccinate sodium salt






carcinoembryonic antigen


cross-linked iron oxide


central nervous system


computed tomography


4-(dimethyl-amino) pyridine


meso-2,3-dimercaptosuccinic acid


1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]


experimental autoimmune encephalomyelitis


gadobenate dimeglumine


gastrointestinal tract




human chorionic gonadotropin


human serum albumin


Immunoglobulin G


monoclonal antibody


magnetic drug targeting


magnetic resonance imaging


monocrystalline iron oxide nanoparticles


magnetism-engineered iron oxide


myocardial infarction


saturation magnetization


mesenchymal stem cells


malignant pleural mesothelioma


mononuclear phagocytic system


malignant pleural mesothelioma


oral magnetic particles


poly(ɛ-caprolactone)-b-poly(ethylene glycol)


polyethylene glycols


poly(ethylene oxide)




poly(propylene oxide)


polysialic acids


reticuloendothelial system


arginine–glycine–aspartic acid containing synthetic peptide


stem cells


superparamagnetic iron oxide


standard superparamagnetic iron oxide


transactivator of transcription peptide


thermal cross-linked superparamagnetic iron oxide


ultra-small superparamagnetic iron oxide


vascular cell adhesion molecule-1


  1. 1.
    Ai, H., et al.: Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater. 17, 1949–1952 (2005)CrossRefGoogle Scholar
  2. 2.
    Albregts, M., et al.: A feasibility study in oesophageal carcinoma using deep loco-regional hyperthermia combined with concurrent chemotherapy followed by surgery. Int. J. Hyperthermia 20, 647–659 (2004)CrossRefGoogle Scholar
  3. 3.
    Alexiou, C., et al.: Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000)Google Scholar
  4. 4.
    Alexiou, C., et al.: Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J. Magn. Magn. Mater. 252, 363–366 (2002)CrossRefGoogle Scholar
  5. 5.
    Alexiou, C., et al.: In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J. Magn. Magn. Mater. 293, 389–393 (2005)CrossRefGoogle Scholar
  6. 6.
    Alvarez Secord, A., et al.: Phase I/II trial of intravenous Doxil® and whole abdomen hyperthermia in patients with refractory ovarian cancer. Int. J. Hyperthermia 21, 333–347 (2005)CrossRefGoogle Scholar
  7. 7.
    Amsalem, Y., et al.: Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116(suppl. I), I-38–I-45 (2007)CrossRefGoogle Scholar
  8. 8.
    Anastase, S., et al.: Affinity chromatography of human anti-dextran antibodies: isolation of two distinct populations. J. Chromatogr. B, Biomed. Sci. Appl. 686, 141–150 (1996)CrossRefGoogle Scholar
  9. 9.
    Anderson, S.A., et al.: Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105, 420–425 (2005)CrossRefGoogle Scholar
  10. 10.
    Anzai, Y., et al.: Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology 192, 709–715 (1994)Google Scholar
  11. 11.
    Anzai, Y., et al.: Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. J. Magn. Reson. Imaging 7, 75–81 (1997)CrossRefGoogle Scholar
  12. 12.
    Anzai, Y., et al.: Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and ffficacy study. Radiology 228, 777–788 (2003)CrossRefGoogle Scholar
  13. 13.
    Arbab, A.S., et al.: Ferumoxides-enhanced double-echo T2-weighted MR imaging in differentiating metastases from nonsolid benign lesions of the liver. Radiology 225, 151–158 (2002)CrossRefGoogle Scholar
  14. 14.
    Arbab, A.S., et al.: Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229, 838–846 (2003)CrossRefGoogle Scholar
  15. 15.
    Arbab, A.S., et al.: In vivo trafficking and targeted delivery of magnetically labelled stem cells. Hum. Gene Ther. 15, 351–360 (2004)CrossRefGoogle Scholar
  16. 16.
    Arbab, A.S., et al.: Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol. Imag. 3, 24–32 (2004)CrossRefGoogle Scholar
  17. 17.
    Arbab, A.S., et al.: Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 18, 553–559 (2005)CrossRefGoogle Scholar
  18. 18.
    Arbab, A.S., et al.: Labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis magnetic resonance imaging and confocal microscopy studies of magnetically. Stem Cells 24, 671–678 (2006)CrossRefGoogle Scholar
  19. 19.
    Arruebo, M., et al.: Antibody-functionalized hybrid superparamagnetic nanoparticles. Adv. Funct. Mater. 17, 1473–1479 (2007)CrossRefGoogle Scholar
  20. 20.
    Artemov, D., et al.: MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49, 403–408 (2003)CrossRefGoogle Scholar
  21. 21.
    Artemov, D., et al.: Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res. 63, 2723–2727 (2003)Google Scholar
  22. 22.
    Babes, L., et al.: Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212, 474–482 (1999)CrossRefGoogle Scholar
  23. 23.
    Bach-Gansmo, T.: Ferrimagnetic susceptibility contrast agents. Acta Radiol. Suppl. 387, 1–30 (1993)Google Scholar
  24. 24.
    Bach-Gansmo, T., et al.: Abdominal MRI using a negative contrast agent. Br. J. Radiol. 66, 420–425 (1993)CrossRefGoogle Scholar
  25. 25.
    Bayer HealthCare Pharmaceuticals: Feridex®. (2007). Accessed 5 November 2007
  26. 26.
    Bee, A., et al.: Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 149, 6–9 (1995)CrossRefGoogle Scholar
  27. 27.
    Belin, T., et al.: Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters. J. Solid State Chem. 163, 459–465 (2002)CrossRefGoogle Scholar
  28. 28.
    Ben-Hur, T., et al.: Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magn. Reson. Med. 57, 164–171 (2007)CrossRefGoogle Scholar
  29. 29.
    Bjørnerud, A., et al.: Assessment of T1 and T2 * effects in vivo and ex vivo using iron oxide nanoparticles in steady state—dependence on blood volume and water exchange. Magn. Reson. Med. 47, 461–471 (2002)Google Scholar
  30. 30.
    Bonnemain, B.: Superparamagnetic agents in magnetic resonance imaging. Physicochemical characteristics and clinical application. A review. J. Drug Target. 6, 167–174 (1998)CrossRefGoogle Scholar
  31. 31.
    Bos, C., et al.: In vivo MR imaging of intravascularly injected magnetically labeled stem cells in rat kidney and liver. Radiology 233, 781–789 (2004)CrossRefGoogle Scholar
  32. 32.
    Boudghëne, F.P., et al.: Contribution of oral magnetic particles in MR imaging of the abdomen with spin-echo and gradient-echo sequences. J. Magn. Reson. Imaging 3, 107–112 (1993)CrossRefGoogle Scholar
  33. 33.
    Brusentsov, N.A., et al.: Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J. Magn. Magn. Mater. 225, 113–117 (2001)CrossRefGoogle Scholar
  34. 34.
    Bulte, J.W.M., et al.: Neurotransplantation of magnetically labeled oligodendrocytes progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. 96, 15256–15261 (1999)CrossRefGoogle Scholar
  35. 35.
    Bulte, J.W.M. and Kraitchman, D.L.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004)CrossRefGoogle Scholar
  36. 36.
    Butle, J.W., et al.: Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn. Reson. Med. 25, 148–157 (1992)CrossRefGoogle Scholar
  37. 37.
    Cahill, K.S., et al.: Noninvasive monitoring and tracking of muscle stem cell transplant. Transplantation 78, 1626–1633 (2004)CrossRefGoogle Scholar
  38. 38.
    Carreño, T.G., et al.: Preparation of homogeneous Zn/Co mixed oxides by spray pyrolysis. Mater. Chem. Phys. 27, 287–296 (1991)CrossRefGoogle Scholar
  39. 39.
    Cerdan, S., et al.: Monoclonal antibody-coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magn. Reson. Med. 12, 151–163 (1989)CrossRefGoogle Scholar
  40. 40.
    Cheng, F.-Y., et al.: Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26, 729–738 (2005)CrossRefGoogle Scholar
  41. 41.
    Choi, H.S., et al.: Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007)CrossRefGoogle Scholar
  42. 42.
    Choi, J.-S., et al.: Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 128, 15982–15983 (2006)CrossRefGoogle Scholar
  43. 43.
    Corot, C., et al.: Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Del. Rev. 58, 1471–1504 (2006)CrossRefGoogle Scholar
  44. 44.
    Daldrup-Link, H.E., et al.: Macromolecular contrast medium (Feruglose) versus small molecular contrast medium (Gadopentetate) enhanced magnetic resonance imaging: differentiation of benign and malignant breast lesions. Acad. Radiol. 10, 1237–1246 (2003)CrossRefGoogle Scholar
  45. 45.
    Damadian, R.: Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153 (1971)CrossRefGoogle Scholar
  46. 46.
    Damadian, R.: Apparatus and method for detecting cancer in tissue. US Patent 3,789,832: February 5, 1974Google Scholar
  47. 47.
    Dandamudi, S. and Campbell, R.B.: The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials 28, 4673–4683 (2007)CrossRefGoogle Scholar
  48. 48.
    Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997)CrossRefGoogle Scholar
  49. 49.
    Deng, Y., et al.: Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater. 257, 69–78 (2003)CrossRefGoogle Scholar
  50. 50.
    Duterloo, H.S.: Historic publication on the first use of magnets in orthodontics. Am. J. Orthod. Dentofacial Orthop. 108, 15A–16A (1995)Google Scholar
  51. 51.
    Dutton, A.H., et al.: Iron-dextran antibody conjugates: general method for simultaneous staining of two components in high-resolution immunoelectron microscopy. Proc. Natl. Acad. Sci. 76, 3392–3396 (1979)CrossRefGoogle Scholar
  52. 52.
    Fajardo, L.F.: Pathological effects of hyperthermia in normal tissues. Cancer Res. 44(suppl.), 4826s–4835s (1984)Google Scholar
  53. 53.
    Fauconnier, N., et al.: Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J. Colloid Interface Sci. 194, 427–433 (1997)CrossRefGoogle Scholar
  54. 54.
    Fishbane, S., et al.: The safety of intravenous iron dextran in hemodialysis patients. Am. J. Kidney Dis. 28, 529–534 (1996)CrossRefGoogle Scholar
  55. 55.
    Forbes, Z.G., et al.: An approach to targeted drug delivery based on uniform magnetic fields. IEEE Trans. Magn. 39, 3372–3377 (2003)CrossRefGoogle Scholar
  56. 56.
    Funovics, M.A., et al.: MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn. Reson. Imaging 22, 843–850 (2004)CrossRefGoogle Scholar
  57. 57.
    Gallo, J.M., et al.: Targeting anticancer drugs to the brain: II. Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats. J. Pharmacokin. Biopharm. 21, 575–592 (1993)CrossRefGoogle Scholar
  58. 58.
    Gittins, D.I. and Caruso, F.: Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed. 40, 3001–3004 (2001)CrossRefGoogle Scholar
  59. 59.
    Glöckl, G., et al.: The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys.: Condens. Matter 18, S2935–S2949 (2006)CrossRefGoogle Scholar
  60. 60.
    Gomi, T., et al.: Evaluation of the changes in signals from the spleen using ferucarbotran. Radiat. Med. 25, 135–138 (2007)CrossRefGoogle Scholar
  61. 61.
    Goya, F.G., et al.: Static and dymanic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)CrossRefGoogle Scholar
  62. 62.
    Grief, A.D. and Richardson, G.: Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293, 455–463 (2005)CrossRefGoogle Scholar
  63. 63.
    Groman, E.V.: Biologically degradable superparamagnetic materials for use in clinical applications. US Patent 4,827,945: May 9, 1989Google Scholar
  64. 64.
    Gupta, A.K. and Wells, S.: Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity. IEEE Trans. Nanobiosci. 3, 66–73 (2004)CrossRefGoogle Scholar
  65. 65.
    Gupta, A.K. and Curtis, A.S.G.: Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J. Mater. Sci.: Mater. Med. 15, 493–496 (2004)CrossRefGoogle Scholar
  66. 66.
    Gupta, A.K. and Gupta, M.: Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26, 1565–1573 (2005)CrossRefGoogle Scholar
  67. 67.
    Gupta, A.K. and Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)CrossRefGoogle Scholar
  68. 68.
    Guzman, R., et al.: Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. 104, 10211–10216 (2007)CrossRefGoogle Scholar
  69. 69.
    Häfeli, U.: The History of Magnetism in Medicine. In: Andrä, W. and Nowak, H. (eds.) Magnetism in Medicine: A Handbook, Second Edition, pp. 1–25. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007)Google Scholar
  70. 70.
    Hahn, P.F., et al.: First clinical trials of a new superparamagnetic iron oxide for the use as an oral gastrointestinal contrast agent in MR imaging. Radiology 175, 695–700 (1990)Google Scholar
  71. 71.
    Harisinghani, M.G., et al.: Splenic imaging with ultrasmall superparamagnetic iron oxide ferumoxtran-10 (AMI-7227): preliminary observations. J. Comput. Assist. Tomogr. 25, 770–776 (2001)CrossRefGoogle Scholar
  72. 72.
    Harisinghani, M.G., et al.: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003)CrossRefGoogle Scholar
  73. 73.
    Hasegawa, M. and Hokkoku, S.: Magnetic iron oxide-dextran complex and process for its production. US Patent 4,101,435: July 18, 1978Google Scholar
  74. 74.
    Hergt, R., et al.: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.: Condens. Matter 18, S2919–S2934 (2006)CrossRefGoogle Scholar
  75. 75.
    Hill, J.M., et al.: Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108, 1009–1014 (2003)CrossRefGoogle Scholar
  76. 76.
    Himes, N., et al.: In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn. Reson. Med. 52, 1214–1219 (2004)CrossRefGoogle Scholar
  77. 77.
    Hogemann, D., et al.: High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug. Chem. 13, 116–121 (2002)CrossRefGoogle Scholar
  78. 78.
    Hong, R., et al.: Comparison of schemes for preparing magnetic Fe3O4 nanoparticles. China Particuology 5, 186–191 (2007)CrossRefGoogle Scholar
  79. 79.
    Hu, D.E., et al.: Monitoring T-lymphocyte trafficking in tumors undergoing immune rejection. Magn. Reson. Med. 54, 1473–1479 (2005)CrossRefGoogle Scholar
  80. 80.
    Hyeon, T., et al.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001)CrossRefGoogle Scholar
  81. 81.
    Hyeon, T., et al.: Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals J. Phys. Chem. B 106, 6831–6833 (2002)CrossRefGoogle Scholar
  82. 82.
    Ichikawa, T., et al.: MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4, 523–530 (2002)CrossRefGoogle Scholar
  83. 83.
    Igartua, M., et al.: Development and characterization of solid lipid nanoparticles loaded with magnetite. Int. J. Pharm. 233, 149–157 (2002)CrossRefGoogle Scholar
  84. 84.
    Ittrich, H., et al.: In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T. J. Magn. Reson. Imag. 25, 1179–1191 (2007)CrossRefGoogle Scholar
  85. 85.
    Jacobsen, T.F., et al.: Oral magnetic particles (ferristene) as a contrast medium in abdominal magnetic resonance imaging. Acad. Radiol. 3, 571–580 (1996)CrossRefGoogle Scholar
  86. 86.
    Jendelova, P., et al.: Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res. 76, 232–243 (2004)CrossRefGoogle Scholar
  87. 87.
    Johannsen, M., et al.: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperthermia 21, 637–647 (2005)CrossRefGoogle Scholar
  88. 88.
    Johansson, L.O., et al.: A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J. Magn. Reson. Imaging 13, 615–618 (2001)CrossRefGoogle Scholar
  89. 89.
    Josephson, L., et al.: High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug. Chem. 10, 186–191 (1999)CrossRefGoogle Scholar
  90. 90.
    Ju, S., et al.: In Vivo MR tracking of mesenchymal stem cells in rat liver after intrasplenic transplantation. Radiology 245, 206–215 (2007)CrossRefGoogle Scholar
  91. 91.
    Jun, Y.-W., et al.: Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733 (2005)CrossRefGoogle Scholar
  92. 92.
    Jung, C.W. and Jacobs, P.: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 661–674 (1995)CrossRefGoogle Scholar
  93. 93.
    Jurgons, R., et al.: Drug loaded magnetic nanoparticles for cancer therapy. J. Phys.: Condens. Matter 18, S2893–S2902 (2006)CrossRefGoogle Scholar
  94. 94.
    Kanematsu, M., et al.: Imaging liver metastases: review and update. Eur. J. Radiol. 58, 217–228 (2006)CrossRefGoogle Scholar
  95. 95.
    Kang, E., et al.: Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J. Phys. Chem. B 108, 13932–13935 (2004)CrossRefGoogle Scholar
  96. 96.
    Kang, H.W., et al.: Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13, 122–127 (2002)CrossRefGoogle Scholar
  97. 97.
    Kang, Y.S., et al.: Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8, 2209–2211 (1996)CrossRefGoogle Scholar
  98. 98.
    Kato, H., et al.: Ferumoxide-enhanced MR imaging of hepatocellular carcinoma: correlation with histologic tumor grade and tumor vascularity. J. Magn. Reson. Imaging 19, 76–81 (2004)CrossRefGoogle Scholar
  99. 99.
    Kehagias, D.T., et al.: Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J. Magn. Reson. Imaging 14, 595–601 (2001)CrossRefGoogle Scholar
  100. 100.
    Kelly, K.A., et al.: Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96, 327–336 (2005)CrossRefGoogle Scholar
  101. 101.
    Kim, D.K., et al.: Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225, 30–36 (2001)CrossRefGoogle Scholar
  102. 102.
    Kim, S.-H., et al.: Fabrication and estimation of Au-coated Fe3O4 nanocomposite powders for the separation and purification of biomolecules. Mater. Sci. Eng. A 449–451, 386–388 (2007)Google Scholar
  103. 103.
    Kim, Y.K., et al.: Detection of liver metastases: gadobenate dimeglumine-enhanced three-dimensional dynamic phases and one-hour delayed phase MR imaging versus superparamagnetic iron oxide-enhanced MR imaging. Eur. Radiol. 15, 220–228 (2005)CrossRefGoogle Scholar
  104. 104.
    Kircher, M.F., et al.: In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 63, 6838–6846 (2003)Google Scholar
  105. 105.
    Koh, D.-M., et al.: New horizons in oncologic imaging. N. Engl. J. Med. 348, 2487–2488 (2003)CrossRefGoogle Scholar
  106. 106.
    Kopp, A., et al.: MR imaging of the liver with resovist: safety,efficacy, and pharmacodynamic properties. Radiology 204, 749–756 (1997)Google Scholar
  107. 107.
    Kraitchman, D.L., et al.: In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290–2293 (2003)CrossRefGoogle Scholar
  108. 108.
    Kresse, M., et al.: Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn. Reson. Med. 40, 236–242 (1998)CrossRefGoogle Scholar
  109. 109.
    Kullberg, M., et al.: Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors. Med. Hypoth. 64, 468–470 (2005)CrossRefGoogle Scholar
  110. 110.
    Laghi, A., et al.: Oral contrast agents for magnetic resonance imaging of the bowel. Top. Magn. Reson. Imaging 13, 389–396 (2002)CrossRefGoogle Scholar
  111. 111.
    Lawaczeck, R., et al.: Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl. Organometal. Chem. 18, 506–513 (2004)CrossRefGoogle Scholar
  112. 112.
    Lee, H., et al.: Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 129, 12739–12745 (2007)CrossRefGoogle Scholar
  113. 113.
    Lee, J.-H., et al.: Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int. Ed. 45, 8160–8162 (2006)CrossRefGoogle Scholar
  114. 114.
    Lee, J.-H., et al.: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007)CrossRefGoogle Scholar
  115. 115.
    Lee, S.-J., et al.: Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. J. Magn. Magn. Mater. 282, 147–150 (2004)CrossRefGoogle Scholar
  116. 116.
    Lee, Y., et al.: Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 15, 503–509 (2005)CrossRefGoogle Scholar
  117. 117.
    Lefebure, S., et al.: Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J. Mater. Res. 13, 2975–2981 (1998)CrossRefGoogle Scholar
  118. 118.
    Lemke, A.-J., et al.: MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Eur. Radiol. 14, 1949–1955 (2004)CrossRefGoogle Scholar
  119. 119.
    Lewin, M., et al.: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000)CrossRefGoogle Scholar
  120. 120.
    Li, S., et al.: Structured materials syntheses in a self-assembled surfactant mesophase. Colloids Surf. A 174, 275–281 (2000)CrossRefGoogle Scholar
  121. 121.
    Livesay, B.R.: 9th International Conference on rare earth magnets and their applications. (1987)Google Scholar
  122. 122.
    López, A., et al.: Magnetic properties of γ-Fe2O3 small particles prepared by spray pyrolysis. J. Magn. Magn. Mater. 140–144, 383–384 (1995)CrossRefGoogle Scholar
  123. 123.
    Lübbe, A.S., et al.: Clinical applications of magnetic drug targeting. J. Surg. Res. 95, 200–206 (2001)CrossRefGoogle Scholar
  124. 124.
    MacVicar, D., et al.: Phase III trial of oral magnetic particles in MRI of abdomen and pelvis. Clin. Radiol. 47, 183–188 (1993)CrossRefGoogle Scholar
  125. 125.
    Matuszewski, L., et al.: Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235, 155–161 (2005)CrossRefGoogle Scholar
  126. 126.
    McLachlan, S.J., et al.: Phase I clinical evaluation of a new iron oxide MR contrast agent. J. Magn. Reson. Imaging 43, 301–307 (1994)CrossRefGoogle Scholar
  127. 127.
    Metz, S., et al.: Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14, 1851–1858 (2004)CrossRefGoogle Scholar
  128. 128.
    Moore, A., et al.: Measuring transferrin receptor gene expression by NMR imaging. Biochim. Biophys. Acta 1402, 239–249 (1998)CrossRefGoogle Scholar
  129. 129.
    Moore, A., et al.: In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res. 64, 1821–1827 (2004)CrossRefGoogle Scholar
  130. 130.
    Mykhaylyk, O., et al.: Doxorubicin magnetic conjugate targeting upon intravenous injection into mice: high gradient magnetic field inhibits the clearance of nanoparticles from the blood. J. Magn. Magn. Mater. 293, 473–482 (2005)CrossRefGoogle Scholar
  131. 131.
    Namkung, S., et al.: Superparamagnetic iron oxide (SPIO)-enhanced liver MRI with ferucarbotran: efficacy for characterization of focal liver lesions. J. Magn. Reson. Imaging 25, 755–765 (2007)CrossRefGoogle Scholar
  132. 132.
    Nedkov, I., et al.: Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation. J. Magn. Magn. Mater. 300, 358–367 (2006)CrossRefGoogle Scholar
  133. 133.
    Nishijima, S., et al.: A study on magnetically targeted drug delivery system using superconducting magnet. Physica C 463–465, 1311–1314 (2007)CrossRefGoogle Scholar
  134. 134.
    Nishimura, H., et al.: Preoperative esophageal cancer staging: magnetic resonance imaging of lymph node with ferumoxtran-10, an ultrasmall superparamagnetic iron oxide. J. Am. Coll. Surg. 202, 604–611 (2006)CrossRefGoogle Scholar
  135. 135.
    Oude Engberink, R.D., et al.: Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243, 467–474 (2007)CrossRefGoogle Scholar
  136. 136.
    Papell, S.S.: Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent 3,215,572: November 2, 1965Google Scholar
  137. 137.
    Park, H.-Y., et al.: Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23, 9050–9056 (2007)CrossRefGoogle Scholar
  138. 138.
    Park, J., et al.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)CrossRefGoogle Scholar
  139. 139.
    Park, J., et al.: One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 44, 2872–2877 (2005)CrossRefGoogle Scholar
  140. 140.
    Pellegrino, T., et al.: Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4, 703–707 (2004)CrossRefGoogle Scholar
  141. 141.
    Pillai, V., et al.: Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv. Colloid Interface Sci. 55, 241–269 (1995)CrossRefGoogle Scholar
  142. 142.
    Pirko, I., et al.: In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB 18, 179–181 (2004)Google Scholar
  143. 143.
    Qin, J., et al.: A high-performance magnetic resonance imaging T2 contrast agent. Adv. Mater. 19, 1874–1878 (2007)CrossRefGoogle Scholar
  144. 144.
    Raaphorst, G.P.: Fundamental aspects of hyperthermic biology. In: Field, S.B. and Hand, J.W. (eds.) An Introduction to the Practical Aspects of Clinical Hyperthermia, pp. 10–54. Taylor and Francis, London (1990)Google Scholar
  145. 145.
    Rad, A.M., et al.: Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J. Magn. Reson. Imag. 26, 366–374 (2007)CrossRefGoogle Scholar
  146. 146.
    Reimer, P., et al.: Receptor imaging: application to MR imaging of liver cancer. Radiology 177, 729–734 (1990)Google Scholar
  147. 147.
    Reimer, P., et al.: Receptor-directed contrast agents for MR imaging: preclinical evaluation with affinity assays. Radiology 182, 565–569 (1992)Google Scholar
  148. 148.
    Reimer, P., et al.: Pancreatic receptors: initial feasibility studies with a targeted contrast agent for MR imaging. Radiology 193, 527–531 (1994)Google Scholar
  149. 149.
    Reimer, P. and Tombach, B.: Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur. Radiol. 8, 1198–1204 (1998)CrossRefGoogle Scholar
  150. 150.
    Reimer, P. and Balzer, T.: Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13, 1266–1276 (2003)Google Scholar
  151. 151.
    Remsen, L.G., et al.: MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. Am. J. Neuroradiol. 17, 411–418 (1996)Google Scholar
  152. 152.
    Renshaw, P.F., et al.: Immunospecific NMR contrast agents. Magn. Reson. Imaging 4, 351–357 (1986)CrossRefGoogle Scholar
  153. 153.
    Ritter, J.A., et al.: Application of high gradient magnetic separation principles to magnetic drug targeting. J. Magn. Magn. Mater. 280, 184–201 (2004)CrossRefGoogle Scholar
  154. 154.
    Rockenberger, J., et al.: A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 121, 11595–11596 (1999)CrossRefGoogle Scholar
  155. 155.
    Roger, J., et al.: Behavior of aqueous ferrofluids in presence of amino acids. Eur. J. Solid State Inorg. Chem. 26, 475–488 (1989)Google Scholar
  156. 156.
    Rohrer, M., et al.: Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005)CrossRefGoogle Scholar
  157. 157.
    Rudge, S.R., et al.: Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21, 1411–1420 (2000)CrossRefGoogle Scholar
  158. 158.
    Sanderson, C.J. and Wilson, D.V.: A simple method for coupling proteins to insoluble polysaccharides. Immunology 20, 1061–1065 (1971)Google Scholar
  159. 159.
    Savellano, M.D. and Hasan, T.: Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem. Photobiol. 77, 431–439 (2003)CrossRefGoogle Scholar
  160. 160.
    Schellenberger, E.A., et al.: Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chem. Bio. Chem. 5, 275–279 (2004)Google Scholar
  161. 161.
    Schulze, E., et al.: Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest. Radiol. 30, 604–610 (1995)CrossRefGoogle Scholar
  162. 162.
    Seip, C.T., et al.: Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles. IEEE Trans. Magn. 34, 1111–1113 (1998)CrossRefGoogle Scholar
  163. 163.
    Semelka, R.C. and Helmberger, T.K.: Contrast agents for MR imaging of the liver. Radiology 218, 27–38 (2001)Google Scholar
  164. 164.
    Seo, W.S., et al.: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5, 971–976 (2006)CrossRefGoogle Scholar
  165. 165.
    Shen, T., et al.: Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. MRM 29, 599–604 (1993)Google Scholar
  166. 166.
    Shen, T.T., et al.: Magnetically labeled secretin retains receptor affinity to pancreas acinar cells. Bioconjug. Chem. 7, 311–316 (1996)CrossRefGoogle Scholar
  167. 167.
    Simon, G.H., et al.: Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis. A comparative study between SHU 555 C, Ferumoxtran-10, and Ferumoxytol. Invest. Radiol. 41, 45–51 (2006)CrossRefGoogle Scholar
  168. 168.
    Sminia, P., et al.: Effect of hyperthermia on the central nervous system. Int. J. Hyperthermia 10, 1–130 (1994)CrossRefGoogle Scholar
  169. 169.
    Stark, D.D., et al.: Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301 (1988)Google Scholar
  170. 170.
    Stolnik, S., et al.: Long circulating microparticulate drug carriers. Adv. Drug Del. Rev. 16, 195–214 (1995)CrossRefGoogle Scholar
  171. 171.
    Sun, R., et al.: Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells. Invest. Radiol. 40, 504–513 (2005)Google Scholar
  172. 172.
    Sun, S. and Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)CrossRefGoogle Scholar
  173. 173.
    Sun, S., et al.: Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)CrossRefGoogle Scholar
  174. 174.
    Suslick, K.S., et al.: Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 118, 11960–11961 (1996)CrossRefGoogle Scholar
  175. 175.
    Suwa, T., et al.: Magnetic Resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int. J. Cancer 75, 626–634 (1998)CrossRefGoogle Scholar
  176. 176.
    Takeda, S., et al.: Development of magnetically targeted drug delivery system using superconducting magnet. J. Magn. Magn. Mater. 311, 367–371 (2007)CrossRefGoogle Scholar
  177. 177.
    Tang, J., et al.: Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J. Phys. Chem. B 107, 7501–7506 (2003)CrossRefGoogle Scholar
  178. 178.
    Taupitz, M., et al.: Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol. 39, 394–405 (2004)CrossRefGoogle Scholar
  179. 179.
    Thorek, D.L.J., et al.: Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng. 34, 23–38 (2006)CrossRefGoogle Scholar
  180. 180.
    Tiefenauer, L.X., et al.: Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjug. Chem. 4, 347–352 (1993)CrossRefGoogle Scholar
  181. 181.
    Tiefenauer, L.X., et al.: In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn. Reson. Imaging 14, 391–402 (1996)CrossRefGoogle Scholar
  182. 182.
    Toma, A., et al.: Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br. J. Cancer 93, 131–136 (2005)CrossRefGoogle Scholar
  183. 183.
    Torchilin, V.P.: Drug targeting. Eur. J. Pharm. Sci. 11(Suppl. 2), S81–S91 (2000)CrossRefGoogle Scholar
  184. 184.
    Treleaven, J.G., et al.: Removal of neuroblastoma cells from bone marrow with monoclonal antibodies conjugated to magnetic microspheres. The Lancet 14, 70–73 (1984)CrossRefGoogle Scholar
  185. 185.
    Treleaven, J.G.: Bone marrow purging: an appraisal of immunological and non-immunological methods. Adv. Drug Del. Rev. 2/3, 253–269 (1988)CrossRefGoogle Scholar
  186. 186.
    Udrea, L.E., et al.: An in vitro study of magnetic particle targeting in small blood vessels. Phys. Med. Biol. 51, 4869–4881 (2006)CrossRefGoogle Scholar
  187. 187.
    van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13, 1173–1184 (2002)CrossRefGoogle Scholar
  188. 188.
    Veintemillas-Verdaguer, S., et al.: Effect of the oxidation conditions on the maghemites production by laser pyrolysis. J. Appl. Organometal. Chem. 15, 365–372 (2001)CrossRefGoogle Scholar
  189. 189.
    Vlahos, L., et al.: A comparative study between Gd-DTPA and oral magnetic particles (OMP) as gastrointestinal (GI) contrast agents for MRI of the abdomen. Magn. Reson. Imaging 12, 719–726 (1994)CrossRefGoogle Scholar
  190. 190.
    Wadghiri, Y.Z., et al.: Detection of alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 50, 293–302 (2003)CrossRefGoogle Scholar
  191. 191.
    Walter, G.A., et al.: Noninvasive monitoring of stem cell transfer for muscle disorders. Magn. Reson. Med. 51, 273–277 (2004)CrossRefGoogle Scholar
  192. 192.
    Wang, F.H., et al.: Magnetic resonance tracking of nanoparticle labelled neural stem cells in a rat’s spinal cord. Nanotechnol. 17, 1911–1915 (2006)CrossRefGoogle Scholar
  193. 193.
    Wang, J., et al.: Stepwise directing of nanocrystals to self-assemble at water/oil interfaces. Angew. Chem. Int. Ed. 45, 7963–7966 (2006)CrossRefGoogle Scholar
  194. 194.
    Wang, X., et al.: The heating effect of magnetic fluids in an alternating magnetic field. J. Magn. Magn. Mater. 293, 334–340 (2005)CrossRefGoogle Scholar
  195. 195.
    Wang, Y.-X.J., et al.: Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11, 2319–2331 (2001)CrossRefGoogle Scholar
  196. 196.
    Wang, Y., et al.: “Pulling” nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of α-cyclodextrin. Nano Lett. 3, 1555–1559 (2003)CrossRefGoogle Scholar
  197. 197.
    Weissleder, R., et al.: Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR 152, 167–173 (1989)Google Scholar
  198. 198.
    Weissleder, R., et al.: Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493 (1990)Google Scholar
  199. 199.
    Weissleder, R., et al.: MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein receptors. AJR 155, 1161–1167 (1990)Google Scholar
  200. 200.
    Weissleder, R., et al.: Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 181, 245–249 (1991)Google Scholar
  201. 201.
    Weissleder, R., et al.: Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182, 381–385 (1992)Google Scholar
  202. 202.
    Weissleder, R., et al.: Long-circulating iron oxides for MR imaging. Adv. Drug Del. Rev. 16, 321–334 (1995)CrossRefGoogle Scholar
  203. 203.
    Weissleder, R., et al.: In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–355 (2000)CrossRefGoogle Scholar
  204. 204.
    Weissleder, R., et al.: Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418–1423 (2005)CrossRefGoogle Scholar
  205. 205.
    Whitehead, R.A.: Magnetic particles for use in separations. US Patent 4,554,088: November 19, 1985Google Scholar
  206. 206.
    Wondergem, J., et al.: Effects of local hyperthermia on the motor function of the rat sciatic nerve. Int. J. Radiat. Biol. 53, 429–439 (1988)CrossRefGoogle Scholar
  207. 207.
    Wunderbaldinger, P., et al.: Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad. Radiol. 9(suppl. 2), S304–S306 (2002)CrossRefGoogle Scholar
  208. 208.
    Xia, H., et al.: Hyperthermia combined with intra-thoracic chemotherapy and radiotherapy for malignant pleural mesothelioma. Int. J. Hyperthermia 22, 613–621 (2006)CrossRefGoogle Scholar
  209. 209.
    Xu, Z., et al.: Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 129, 8698–8699 (2007)CrossRefGoogle Scholar
  210. 210.
    Zeng, H., et al.: Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc. 126, 11458–11459 (2004)CrossRefGoogle Scholar
  211. 211.
    Zhang, C., et al.: Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir 23, 1427–1434 (2007)CrossRefGoogle Scholar
  212. 212.
    Zhang, Y., et al.: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23, 1553–1561 (2002)CrossRefGoogle Scholar
  213. 213.
    Zhang, Y. and Zhang, J.: Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J. Colloid Interface Sci. 283, 352–357 (2005)CrossRefGoogle Scholar
  214. 214.
    Zhao, M., et al.: Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7, 1241–1244 (2001)CrossRefGoogle Scholar
  215. 215.
    Zhao, M., et al.: Differential conjugation of tat peptide to superparamagnetic nanoparticles and Its effect on cellular uptake. Bioconjug. Chem. 13, 840–844 (2002)CrossRefGoogle Scholar
  216. 216.
    Zinderman, C.E., et al.: Anaphylactoid reactions to dextran 40 and 70: reports to the United States Food and Drug Administration, 1969 to 2004. J. Vasc. Surg. 43, 1004–1009 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carlos Bárcena
    • 1
    • 2
  • Amandeep K. Sra
    • 1
  • Jinming Gao
    • 1
    • 2
  1. 1.Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical Center at DallasDallasUSA
  2. 2.Department of ChemistryUniversity of Texas at Dallas, RichardsonDallasUSA

Personalised recommendations