Core–Shell Magnetic Nanoclusters

  • Jinlan Wang
  • X.C. Zeng


Nanoclusters, aggregates of a few tens to millions of atoms or molecules, have been extensively studied over the past decades. Core–shell nanoclusters have received increasing attention because of their tunable physical and chemical properties through controlling chemical composition and relative sizes of core and shell. The magnetic core–shell nanoclusters are of particular interests because these heterogeneous nanostructures offer opportunities for developing devices and cluster-assembled materials with new functions for magnetic recording, bio, and medical applications.

The purpose of this review is to report latest progress in the experimental and theoretical studies of bimetallic magnetic core–shell nanoclusters (e.g., at least one component of the constitution is magnetic). Due to page limit, a concise survey of synthetic techniques and main experimental characterizations for magnetic properties is presented. A more detailed overview is given to previous theoretical work.


Shell Structure Gold Coating Total Magnetic Moment Shell Nanoparticles Gold Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the National Nature Science Foundation of China (No. 10604013, 20873019), the Program for New Century Excellent Talents in the University of China (NCET-06-0470), Qinglan Project in the University of Jiangsu Province, and the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University (JW), and partly by the Office of Basic Energy Sciences (DE-FG02-04ER46164), National Science Foundation (CHE-0427746 and DMR-0820521), the Nebraska Research Initiative, and the UNL Research Computing Facility (XCZ).


  1. 1.
    Alonso, J.A.: Electronic and atomic structure, and magnetism of transition-metal clusters. Chem. Rev. 100, 637–678 (2000).CrossRefGoogle Scholar
  2. 2.
    Ravel, B., Carpenter, E.E., Harris, V.G.: Oxidation of iron in iron/gold core/shell nanoparticles. J. Appl. Phys. 91, 8195–8197 (2002).CrossRefGoogle Scholar
  3. 3.
    Baletto, F., Mottet, C., Ferrando, R.: Growth of three-shell onionlike bimetallic nanoparticles. Phys. Rev. Lett. 90, 135504–135507 (2003).CrossRefGoogle Scholar
  4. 4.
    Baletto, F., Mottet, C., Ferrando, R.: Growth simulations of silver shells on copper and palladium nanoclusters. Phys. Rev. B 66, 155420–155430 (2002).CrossRefGoogle Scholar
  5. 5.
    Baletto, F., Mottet, C., Ferrando, R.: Time evolution of Ag–Cu and Ag–Pd core–shell nanoclusters. Eur. Phys. J. D 24, 233–236 (2003).CrossRefGoogle Scholar
  6. 6.
    Baletto, F., Mottet, C., Rapallo, A.: Growth and energetic stability of AgNi core–shell clusters. Surf. Sci. 566–568, 192–196 (2004).CrossRefGoogle Scholar
  7. 7.
    Ban, Z.B., Barnakov, Y.A., Li, F., Golub, V.O., O’Connor, C.J.: The synthesis of core–shell iron@gold nanoparticles and their characterization. J. Mater. Chem. 15, 4660–4662 (2005).CrossRefGoogle Scholar
  8. 8.
    Bansmann, J., Baker, S.H., Binns, C., Blackman, J.A., Bucher, J.-P., orantes-Dávila, J., Dupuis, V., Favre, L., Kechrakos, D., Kleibert, A., Meiwes-Broer, K.-H., Pastor, G.M., Perez, A., Toulemonde, O., Trohidou, K.N., Tuaillon, J., Xie, Y.: Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Rep. 56, 189–275 (2005).CrossRefGoogle Scholar
  9. 9.
    Bao, Y., Calderon, H., Krishnan, K.M.: Synthesis and characterization of magnetic–optical Co–Au core–shell nanoparticles. J. Phys. Chem. C 111, 1941–1944 (2007).CrossRefGoogle Scholar
  10. 10.
    Binns, C., Trohidou, K.N., Bansmann, J., Bakerl, S.H., Blackman, J.A., Bucher, J.-P., Kechrakos, D., Kleibert, A., Louch, S., Meiwes-Broer, K.-H., Pastor, G.M., Perez, A., Xie, Y.: The behaviour of nanostructured magnetic materials produced by depositing gas-phase nanoparticles. J. Phys. D: Appl. Phys. 38, R357–R379 (2005).CrossRefGoogle Scholar
  11. 11.
    Bloomfield, L. A., Deng, J., Zhang, H., Emmert, J.W.: in Proc. International Symposium on Cluster and Nanostructure Interfaces, edited by P. Jena, S. N. Khanna, and B. K. Rao, World Publishers, Singapore, 2000, p. 131.Google Scholar
  12. 12.
    Brack, M.: The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, 677–732 (1993).CrossRefGoogle Scholar
  13. 13.
    Carpenter, E., Kumbhar, A., Wiemann, J., Srikanth, H., Wiggins, J., Zhou, W., O’Connor, C.: Synthesis and magnetic properties of gold–iron–gold nanocomposites. Mater. Sci. Eng. A 286, 81–86 (2000).CrossRefGoogle Scholar
  14. 14.
    Carpenter, E., Sims, J., Wienmann, J., Zhou, W., O’Conner, C.J.: Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques.  J. Appl. Phys. 87, 5615–5617 (2000).CrossRefGoogle Scholar
  15. 15.
    Carpenter, E.E., Sangregono, C., O'Connor, C.J.: Effects of shell thickness on blocking temperature of nanocomposites of metal particles with gold shells. IEEE Tran. Magn. 35, 3496–3498 (1999).CrossRefGoogle Scholar
  16. 16.
    Carpenter, E.E.: Iron nanoparticles as potential magnetic carriers. J. Magn. Magn. Mater. 225, 17–20 (2001).CrossRefGoogle Scholar
  17. 17.
    Caruso, F.: Nanoenginneering of particle surfaces. Adv. Mater. 13, 11–22 (2001).CrossRefGoogle Scholar
  18. 18.
    Chen, D., Li, J., Shi, C., Du, X., Zhao, N., Sheng, J., Liu, S.: Properties of core–shell Ni–Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion. Chem. Mater. 19, 3399–3405 (2007).CrossRefGoogle Scholar
  19. 19.
    Chen, D., Wang, S.: Protective agent-free synthesis of Ni–Ag core–shell nanoparticles. Mater. Chem. Phys. 100, 468–471 (2006).CrossRefGoogle Scholar
  20. 20.
    Chen, M., Yamamuro, S., Farrell, D., Majetich, S.A.: Gold-coated iron nanoparticles for biomedical applications. J. Appl. Phys. 93, 7551–7553 (2003).CrossRefGoogle Scholar
  21. 21.
    Cho, S.J., Idrobo, J.C., Olamit, J., Liu, K., Browning, N.B., Kauzlarich, S.M., Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem. Mater. 17, 3181–3186 (2005).CrossRefGoogle Scholar
  22. 22.
    Cho, S.J., Shahin, A.M., Long, G.J., Davies, J.E., Liu, K., Grandjean, F., Kauzlarich, S.M.: Magnetic and mössbauer spectral study of core/shell structured Fe/Au nanoparticles. Chem. Mater. 18, 960–967 (2006).CrossRefGoogle Scholar
  23. 23.
    Cho, S.J., Kauzlarich, S.M., Olamit, J., Liu, K., Grandjean, F., Rebbouh, L., Long, G. J.: Characterization and magnetic properties of core–shell structured Fe–Au nanoparticles. J. Appl. Phys. 95, 6803–6806 (2004).CrossRefGoogle Scholar
  24. 24.
    de Heer, W.A.: The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993).CrossRefGoogle Scholar
  25. 25.
    Dorfbauer, F., Schrefl, T.: Nanostructure calculation of CoAg core–shell clusters. J. Appl. Phys. 99, 08G706 (2006).CrossRefGoogle Scholar
  26. 26.
    Dzhurakhalov, A., Rasulov, A., Van Hoof, T., Hou, M.: Ag–Co clusters deposition on Ag(100): an atomic scale study. Eur. Phys. J. D 31, 53–61 (2004).CrossRefGoogle Scholar
  27. 27.
    Dzhurakhalov, A.A., Hou, M.: Equilibrium properties of binary and ternary metallic immiscible nanoclusters. Phys. Rev. B 76, 045429–045438 (2007).CrossRefGoogle Scholar
  28. 28.
    Ferrando, R., Fortunelli, A., Rossi, G.: Quantum effects on the structure of pure and binary metallic nanoclusters. Phys. Rev. B 72, 085449–085457 (2005).CrossRefGoogle Scholar
  29. 29.
    Guevara, J., Llois, A.M., Weissmann, M.: Large variations in the magnetization of Co clusters induced by noble-metal coating.  Phys. Rev. Lett. 81, 5306–5309 (1998).CrossRefGoogle Scholar
  30. 30.
    Guo, Z.H., Kumar, C.S.S.R., Henry, L.L., Doomes, E.E., Hormes, J., Podlaha, E.J.: Displacement synthesis of Cu shells surrounding Co nanoparticles. J. Electrochem. Soc. 152 D1–D5 (2005).CrossRefGoogle Scholar
  31. 31.
    Haberland, H. (ed.), Clusters of Atoms and Molecules I: Theory, experimental methods in: Cluster of atoms and molecules. Springer-Verlag, Berlin (1994).Google Scholar
  32. 32.
    Hoof, T.V., Hou M.: Structural and thermodynamic properties of Ag–Co nanoclusters. Phys. Rev. B 72, 115434–115445 (2005).CrossRefGoogle Scholar
  33. 33.
    Johansson, M.P., Sundholm, D., Vaara, J.: Au32: A 24-carat golden fullerene. Angew. Chem. Int. Ed. 43, 2678–2681 (2004).CrossRefGoogle Scholar
  34. 34.
    Jun, C.H., Park, Y.J., Yeon, Y.R., Choi, J.R., Lee, W.R., Ko, S.J., Cheon, J.: Demonstration of a magnetic and catalytic Co@Pt nanoparticle as a dual-function nanoplatform. Chem. Commun. 15, 1619–1621 (2006).CrossRefGoogle Scholar
  35. 35.
    Jun, Y.K., Choi, J., Cheon, J.W.: Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem. Commun. 1203–1214 (2007).Google Scholar
  36. 36.
    Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., Muhammed, M.: Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J. Magn. Magn. Mater. 225, 256–261 (2001).CrossRefGoogle Scholar
  37. 37.
    Kondo, Y., Takayanagi, K.: Synthesis and characterization of helical multi-shell gold nanowires. Science. 289, 606–608 (2000).CrossRefGoogle Scholar
  38. 38.
    Lee, C., Chen, D.: Large-scale synthesis of Ni–Ag core–shell nanoparticles with magnetic, optical and anti-oxidation properties. Nanotechnology 17, 3094–3099 (2006).CrossRefGoogle Scholar
  39. 39.
    Lee, W.-R., Kim, M.G., Choi, J.-R., Park, J.-I., Ko, S.J., Oh, S.J., Cheon, J.: Redox-transmetalation process as a generalized synthetic strategy for core–shell magnetic nanoparticles. J. Am. Chem. Soc. 127, 16090–16097 (2005).CrossRefGoogle Scholar
  40. 40.
    Lin, J., Zhou, W.L., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E. E., O'Connor, C. J.: Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J. Solid State Chem. 159, 26–31(2001).CrossRefGoogle Scholar
  41. 41.
    Liz-Marzán, L.M., Mulvaney, P.: The assembly of coated nanocrystals. J. Phys. Chem. B 107, 7312–7326 (2003).CrossRefGoogle Scholar
  42. 42.
    Moskovits, M.: Metal clusters. Annu. Rev. Phys. Chem. 42, 465–499 (1991).CrossRefGoogle Scholar
  43. 43.
    Murray, C.B., Kagan, C.R., Bawendi, M.G.: synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Res. 30, 545–610 (2000).CrossRefGoogle Scholar
  44. 44.
    Niemeyer, C.M.: Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem., Int. Ed. 40, 4128–4158 (2001).CrossRefGoogle Scholar
  45. 45.
    O’Connor, C.J., Kolesnichenko, V., Carpenter, E., Sangregorio, C., Zhou, W., Kumbhar, A., Sims, J., Agnoli, F.: Fabrication and properties of magnetic particles with nanometer dimensions. Synth. Met. 122, 547–557 (2001).CrossRefGoogle Scholar
  46. 46.
    Park, J.-I., Cheon, J.: Synthesis of “solid solution" and “core–shell" type cobalt–platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. 123, 5743–5746 (2001).CrossRefGoogle Scholar
  47. 47.
    Park, J.-I., Kim, M. G., Jun, Y.-W., Lee, J.S., Lee, W.-R., Cheon, J.: Characterization of superparamagnetic “core–shell" nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution" nanoalloys. J. Am. Chem. Soc. 126, 9072–9078 (2004).CrossRefGoogle Scholar
  48. 48.
    Paulus, P.M., B¨onnemann, H., van der Kraan, A.M., Luis, F., Sinzig, J., de Jongh, L.J.: Magnetic properties of nanosized transition metal colloids: the influence of noble metal coating. Eur. Phys. J. D 9, 501–504 (1999).CrossRefGoogle Scholar
  49. 49.
    Pyykkö, P.: Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).CrossRefGoogle Scholar
  50. 50.
    Rivas, J., Sanchez, R.D., Fondado, A., Izco, C., Garca-Bastida, A.J., Garca-Otero, J., Mira, J., Baldomir, D., Gonzalez, A., Lado, I., Lopez- Quintela, M.A., Oserov, S.B.: Structural and magnetic characterization of Co particles coated with Ag. J. Appl. Phys. 76, 6564–6566 (1994).CrossRefGoogle Scholar
  51. 51.
    Rivasa, J., Garcia-Bastida, A.J., Lopez-Quintela, M.A., Ramos, C.: Magnetic properties of Co/Ag core/shell nanoparticles prepared by successive reactions in microemulsions J. Magn. Magn. Mater. 300, 185–191 (2006).CrossRefGoogle Scholar
  52. 52.
    Rossi, G., Rapallo, A., Mottet, C., Fortunelli, A., Baletto, F., Ferrando, R.: Magic polyicosahedral core–shell clusters. Phys. Rev. Lett. 93, 105503–105506 (2004).CrossRefGoogle Scholar
  53. 53.
    Sao-Joao, S., Giorgio, S., Penisson, J.M., Chapon, C., Bourgeois, S., Henry, C.: Structure and deformations of Pd–Ni core–shell nanoparticles. J. Phys. Chem. B 109, 342–347 (2005)CrossRefGoogle Scholar
  54. 54.
    Sobal, N.S., Ebels, U., Mohwald, H., Giersig, M.: Synthesis of core–shell PtCo nanocrystals. J. Phys. Chem. B. 107, 7351–7354 (2003).CrossRefGoogle Scholar
  55. 55.
    Sobal, N.S., Hilgendorff, M., Mohwald, H., Giersig, M., Spasova, M., Radetic, T., Farle, M.: Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co. Nano Lett. 2, 621–624 (2002).CrossRefGoogle Scholar
  56. 56.
    Sun, Q., Kandalam, A. K., Wang, Q., Jena, P., Kawazoe, Y., Marquez, M.: Effect of Au coating on the magnetic and structural properties of Fe nanoclusters for use in biomedical applications: A density-functional theory study. Phys. Rev. B 73, 134409–134414 (2006).CrossRefGoogle Scholar
  57. 57.
    Van Hoof, T., Dzhurakhalov, A., Hou, M.: Interface formation by low energy deposition of core–shell Ag–Co nanoclusters on Ag(100). Eur. Phys. J. D 43: 159–163 (2007).CrossRefGoogle Scholar
  58. 58.
    Wang, J., Bai, J., Jellinek, J., Zeng, X.C.: Gold-coated transition-metal anion [Mn13@Au20]- with ultrahigh magnetic moment. J. Am. Chem. Soc. 129, 4110–4111 (2007).CrossRefGoogle Scholar
  59. 59.
    Wang, J., Jellinek, J., Zhao, J., Chen, Z., King, R.B., von Rague Schleyer, P.: Hollow cages versus space-filling structures for medium-sized gold clusters: the spherical aromaticity of the Au50 cage. J. Phys. Chem. A 109, 9265–9269 (2005).CrossRefGoogle Scholar
  60. 60.
    Wilcozon, J.P., Abram, B.L.: Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162–1194 (2006).CrossRefGoogle Scholar
  61. 61.
    Xu, Y.H., Wang, J.P.: Magnetic properties of heterostructured Co–Au nanoparticles direct-synthesized from gas phase. IEEE Tran. Magn. 43, 3109–3111 (2007).CrossRefGoogle Scholar
  62. 62.
    Zhang, J., Post, M., Veres, T., Jakubek, Z. J., Guan, J.W., Wang, D., Normandin, F., Deslandes, Y., Simard, B.: Laser-sssisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J. Phys. Chem. B. 110, 7122–7128 (2006).CrossRefGoogle Scholar
  63. 63.
    Zhou, W., Carpenter, E., Kumbhar, A., Sims, J., O’Connor, C.: Nanophase and nanocomposite materials III. J. Mater. Res. Soc. Symp. Proc. 581, 107–112(2000).CrossRefGoogle Scholar
  64. 64.
    Zhou, W.L., Carpenter, E.E., Lin, J., Kumbhar, A., Sims, J., O'Connor, C.J.: Nanostructures of gold coated iron core–shell nanoparticles and the nanobands assembled under magnetic field. Eur. Phys. J. D 16, 289–292 (2001).CrossRefGoogle Scholar
  65. 65.
    Zhurkin, E.E., Hoof, T.V., Hou, M.: Nanoscale alloys and core–shell materials: Model predictions of the nanostructure and mechanical properties. Phys. Rev. B 75, 224102–224116 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsSoutheast UniversityNanjingChina
  2. 2.Department of Chemistry and Nebraska Center for Materials and NanoscienceUniversity of NebraskaLincolnUSA

Personalised recommendations