Advertisement

Magnetic Manipulation of Colloidal Particles

  • Randall M. Erb
  • Benjamin B. Yellen
Chapter

Abstract

We review some recent advances in the field of magnetic manipulation techniques, with particular emphasis on the manipulation of mixed suspensions of magnetic and nonmagnetic colloidal particles. We will first discuss the theoretical framework for describing magnetic forces exerted on particles within fluid suspensions. We will then make a distinction between particle systems that are highly dependent upon Brownian influence and those that are deterministic. In both cases, we will discuss the type of structures which are observed in colloidal suspensions as a function of the size and type of particles in the fluid. We will discuss the theoretical issues that apply to modeling the behavior of these systems, and we will show that the recently developed theoretical models correlate strongly with the presented experimental work. This chapter will conclude with an overview of the potential applications of these magnetic manipulation techniques.

Keywords

Magnetic Force Magnetic Particle Colloidal Particle Fluid Magnetization Magnetic Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Grier, D.G.: A revolution in optical manipulation. Nature 424 (6950), 810–816 (2003)CrossRefGoogle Scholar
  2. 2.
    Ashkin, A., Dziedzic, J. M., Yamane, T.: Optical trapping and manipulation of single cells using infrared-laserbeams. Nature 330 (6150), 769–771 (1987)CrossRefGoogle Scholar
  3. 3.
    Huang, Y., Ewalt, K. L., Tirado, M., Haigis, T. R., Forster, A., Ackley, D., Heller, M. J., O'Connell, J. P., Krihak, M.: Electric manipulation of bioparticles and macromolecules on microfabricated electrodes. Analytical Chemistry 73 (7), 1549–1559 (2001)CrossRefGoogle Scholar
  4. 4.
    Pethig, R.: Dielectrophoresis: Using inhomogeneous AC electrical fields to separate and manipulate cells. Critical Reviews in Biotechnology 16 (4), 331–348 (1996)CrossRefGoogle Scholar
  5. 5.
    Helseth, L. E., Fischer, T. M., Johansen, T. H.: Domain wall tip for manipulation of magnetic particles. Physical Review Letters 91 (20), 208302 (2003)CrossRefGoogle Scholar
  6. 6.
    Yellen, B. B., Hovorka, O., Friedman, G.: Arranging matter by magnetic nanoparticle assemblers. Proceedings of the National Academy of Sciences 102 (25), 8860–8864 (2005)Google Scholar
  7. 7.
    Yellen, B. B., Erb, R. M., Halverson, D. S., Hovorka, O., Friedman, G.: Arraying nonmagnetic colloids by magnetic nanoparticle assemblers. IEEE Transactions on Magnetics 42 (10), 3548–3553 (2006)CrossRefGoogle Scholar
  8. 8.
    Yellen, B. B., Erb, R. M., Son, H. S., Hewlin Jr., R., Shang, H., Lee, G. U.: Traveling wave magnetophoresis for high resolution chip based separations. Lab on a Chip 7 , 1681–1688 (2007)CrossRefGoogle Scholar
  9. 9.
    Gerber, R., Takayasu, M., Friedlaender, F. J.: Generalization of HGMS theory – the capture of ultrafine particles. IEEE Transactions on Magnetics 19 (5), 2115–2117 (1983)CrossRefGoogle Scholar
  10. 10.
    Erb, R. M., Sebba, D. S., Lazarides, A. A., Yellen, B. B.: Magnetic field induced concentration gradients in magnetic nanoparticle suspensions: Theory and Experiment. Journal of Applied Physics. 103 (6), 063916–5 (2008)CrossRefGoogle Scholar
  11. 11.
    Adair, R. K.: Constraints on Biological Effects of Weak Extremely-Low-Frequency Electromagnetic Fields. Physical Review A 43 (2), 1039–1048 (1991)CrossRefGoogle Scholar
  12. 12.
    Grahl, T., Markl, H.: Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology 45 (1–2), 148–157 (1996)CrossRefGoogle Scholar
  13. 13.
    Peterman, E. J. G., Gittes, F., Schmidt, C. F.: “Laser-induced heating in optical traps” Biophysical Journal 84 (2), 1308–1316 (2003)CrossRefGoogle Scholar
  14. 14.
    Friedman, G., Yellen, B.: Magnetic separation, manipulation and assembly of solid phase in fluids. Current Opinion in Colloid and Interface Science 10 (3–4), 158–166 (2005)CrossRefGoogle Scholar
  15. 15.
    Ito, A., Shinkai, M., Honda, H., Kobayashi, T.: Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering 100 (1), 1–11 (2005)CrossRefGoogle Scholar
  16. 16.
    Gijs, M. A. M.: Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluidics and Nanofluidics 1 (1), 22–40 (2004)Google Scholar
  17. 17.
    Gillies, G. T., Ritter, R. C., Broaddus, W. C., Grady, M. S., Howard, M. A., McNeil, R. G.: Magnetic manipulation instrumentation for medical physics research. Review of Scientific Instruments 65 (3), 533–562 (1994)CrossRefGoogle Scholar
  18. 18.
    Xia, N., Hunt, T. P., Mayers, B. T., Alsberg, E., Whitesides, G. M., Westervelt, R. M., Ingber, D. E.: Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical Microdevices 8 (4), 299–308 (2006)CrossRefGoogle Scholar
  19. 19.
    Hancock, J. P., Kemshead, J. T.: A rapid and highly selective approach to cell separations using an immunomagnetic colloid. Journal of Immunological Methods 164 (1), 51–60 (1993)CrossRefGoogle Scholar
  20. 20.
    Heermann, K. H., Hagos, Y., Thomssen, R.: Liquid-phase hybridization and capture of Hepatitis-B virus-DNA with magnetic beads and fluorescence detection of PCR product. Journal of Virological Methods 50 (1–3), 43–57 (1994)CrossRefGoogle Scholar
  21. 21.
    Pipper, J., Inoue, M., Ng, L. F. P., Neuzil, P., Zhang, Y., Novak, L.: Catching bird flu in a droplet. Nature Medicine 13 (10), 1259–1263 (2007)CrossRefGoogle Scholar
  22. 22.
    Kim, S. K., Devine, L., Angevine, M., DeMars, R., Kavathas, P. B.: Direct detection and magnetic isolation of Chlamydia trachomatis major outer membrane protein-specific CD8(+) CTLs with HLA class I tetramers. Journal of Immunology 165 (12), 7285–7292 (2000)Google Scholar
  23. 23.
    De Palma, R., Reekmans, G., Liu, C. X., Wirix-Speetjens, R., Laureyn, W., Nilsson, O., Lagae, L.: Magnetic bead sensing platform for the detection of proteins. Analytical Chemistry 79 (22), 8669–8677 (2007)CrossRefGoogle Scholar
  24. 24.
    Vatta, L. L., Sanderson, R. D., Koch, K. R.: Magnetic nanoparticles: Properties and potential applications. Pure and Applied Chemistry 78 (9), 1793–1801 (2006)CrossRefGoogle Scholar
  25. 25.
    Okuno, M., Hamaguchi, H. O., Hayashi, S.: Magnetic manipulation of materials in a magnetic ionic liquid. Applied Physics Letters 89 (13), 132506 (2006)CrossRefGoogle Scholar
  26. 26.
    Halverson, D., Kalghatgi, S., Yellen, B., Friedman, G.: Manipulation of nonmagnetic nanobeads in dilute ferrofluid. Journal of Applied Physics 99 (8), 08P504 (2006)CrossRefGoogle Scholar
  27. 27.
    Erb, R. M., Yellen, B. B.: Model of detecting nonmagnetic cavities in ferrofluid for biological sensing applications. IEEE Transactions on Magnetics 42 (10), 3554–3556 (2006)CrossRefGoogle Scholar
  28. 28.
    Erb, R. M., Yellen, B. B.: Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions. Journal of Applied Physics 103 : 07A312–3 (2008)CrossRefGoogle Scholar
  29. 29.
    Jones, T. B., Electromechanics of Particles. Cambridge University Press, New York (1995)CrossRefGoogle Scholar
  30. 30.
    Huang, Y., Pethig, R.: Electrode design for negative dielectrophoresis. Measurement Science and Technology 2 (12), 1142–1146 (1991)CrossRefGoogle Scholar
  31. 31.
    Shkel, Y. M., Klingenberg, D. J.: Magnetorheology and magnetostriction of isolated chains of nonlinear magnetizable spheres. Journal of Rheology 45 (2), 351–368 (2001)CrossRefGoogle Scholar
  32. 32.
    Ivanov, A. O., Wang, Z. W., Holm, C.: Applying the chain formation model to magnetic properties of aggregated ferrofluids. Physical Review E 69 (3), 031206 (2004)CrossRefGoogle Scholar
  33. 33.
    Philipse, A. P., Maas, D.: Magnetic colloids from magnetotactic bacteria: Chain formation and colloidal stability. Langmuir 18 (25), 9977–9984 (2002)CrossRefGoogle Scholar
  34. 34.
    Einstein, A.: The theory of the Brownian Motion. Annalen Der Physik 19 (2), 371–381 (1906)MATHCrossRefGoogle Scholar
  35. 35.
    Boal, A. K., Frankamp, B. L., Uzun, O., Tuominen, M. T., Rotello, V. M.: Modulation of spacing and magnetic properties of iron oxide nanoparticles through polymer-mediated ‘bricks and mortar’ self-assembly. Chemistry of Materials 16 (7), 3252–3256 (2004)CrossRefGoogle Scholar
  36. 36.
    Lim, J. K., Tilton, R. D., Eggeman, A., Majetich, S. A.: Design and synthesis of plasmonic magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 311 (1), 78–83 (2007)CrossRefGoogle Scholar
  37. 37.
    Sun, S., Murray, C. B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 287 (5460), 1989 (2000)CrossRefGoogle Scholar
  38. 38.
    Odenbach, S., Liu, M.: Invalidation of the Kelvin force in ferrofluids. Physical Review Letters 86 (2), 328–331 (2001)CrossRefGoogle Scholar
  39. 39.
    Bowen, W. R., Liang, Y., Williams, P. M.: Gradient diffusion coefficients – theory and experiment. Chemical Engineering Science 55 , 2359–2377 (2000)CrossRefGoogle Scholar
  40. 40.
    Israelachvili, J. N., Intermolecular and Surface Forces. Academic Press, New York (1985)Google Scholar
  41. 41.
    Kelland, D. R., Hiresaki, Y., Friedlaender, F. J., Takayasu, M.: Diamagnetic particle capture and mineral separation. IEEE Transactions Magnetics 17 , 2813–2815 (1981)CrossRefGoogle Scholar
  42. 42.
    Ferreira, H. A., Graham, D. L., Freitas, P. P., Cabral, J. M. S.: Biodetection using magnetically labeled biomolecules and arrays of spin valve sensors (invited). Journal of Applied Physics 93 (10), 7281–7286 (2003)CrossRefGoogle Scholar
  43. 43.
    Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E., Colton, R. J.: A biosensor based on magnetoresistance technology. Biosens Bioelectron 13 , 731–739 (1998)CrossRefGoogle Scholar
  44. 44.
    Ivanov, A. O., Kantorovich, S. S., Reznikov, E. N., Holm, C., Pshenichnikov, A. F., Lebedev, A. V., Chremos, A., Camp, P. J.: Magnetic properties of polydisperse ferrofluids: A critical comparison between experiment, theory, and computer simulation. Physical Review E 75 (6), 061405 (2007)CrossRefGoogle Scholar
  45. 45.
    Bradbury, A., Menear, S., Chantrell, R. W.: A Monte-Carlo calculation of the magnetic-properties of a ferrofluid containing interacting polydispersed particles. Journal of Magnetism and Magnetic Materials 54 (7), 745–746 (1986)CrossRefGoogle Scholar
  46. 46.
    Brown, W. F.: Thermal fluctuations of a single-domain particle. Physical Review 130 (5), 1677–1686 (1963)CrossRefGoogle Scholar
  47. 47.
    Madou, M. J., Fundamentals of Microfabrication. CRC Press, New York (2002)Google Scholar
  48. 48.
    Morse, P. M., Feshbach, H., Methods of theoretical physics. McGraw-Hill, New York (1953)MATHGoogle Scholar
  49. 49.
    McNaughton, B. H., Kehbein, K. A., Anker, J. N., Kopelman, R.: Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing. The Journal of Physical Chemistry. 110 , 18958–18964 (2006)CrossRefGoogle Scholar
  50. 50.
    Bonin, K., Kourmanov, B., Walker, T. G.: Light torque nanocontrol, nanomotors and nanorockers. Optics Express. 10 , 984–989 (2002)Google Scholar
  51. 51.
    Reichhardt, C., Nori, F.: Phase locking, devil’s staircases, Farey trees, and Arnold tongues in driven votex lattices with periodic pinning. Physical Review Letters. 82 , 414 (1999)CrossRefGoogle Scholar
  52. 52.
    Fermigier, M., Gast, A.: Structure evolution in a paramagnetic latex suspension. Journal of Colloid and Interface Science. 154 , 522–539 (1992)CrossRefGoogle Scholar
  53. 53.
    Promislow, J. H. E., Gast, A. P., Fermigier, M.: Aggregation kinetics of paramagnetic colloidal particles. The Journal of Physical Chemistry. 102 , 5492–5498 (1995)CrossRefGoogle Scholar
  54. 54.
    Hagenbuchle, M., Liu, J.: Chain formation and chain dynamics in a dilute magnetorheological fluid. Applied Optics 36 (30), 7664–7671 (1997)CrossRefGoogle Scholar
  55. 55.
    Yellen, B., Friedman, G., Feinerman, A.:  Analysis of interactions for magnetic particles assembling on magnetic templates. Journal of Applied Physics 91 (10), 8552–8554 (2002)CrossRefGoogle Scholar
  56. 56.
    Son, H.S., R.M. Erb, B. Samanta, V.M. Rotello, and B.B. Yellen, Magnetically actuated assembly of anisotropic micro- and nano-structures. Nature, 2008 (in submission): 1–4.Google Scholar
  57. 57.
    Camp, P. J., Allen, M. P., Hard ellipsoid rod-plate mixtures: Onsager theory and computer simulations. Physica A 229 (3–4), 410–427 (1996)CrossRefGoogle Scholar
  58. 58.
    San Martin, S. M., Sebastian, J. L., Sancbo, M., Miranda, J. M.: A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure. Physics in Medicine and Biology. 48 (11), 1649–1659 (2003)CrossRefGoogle Scholar
  59. 59.
    Kao, K.C.: Some electromechanical effects on dielectrics. British Journal of Applied Physics. 12 , 629–632 (1961)CrossRefGoogle Scholar
  60. 60.
    Stratton, J.A., Electromagnetic Theory. McGraw-Hill, New York (1941)MATHGoogle Scholar
  61. 61.
    Ooi, C., R.M. Erb, and B.B. Yellen, On the controllability of nanorod alignment in magnetic fluids. Journal of Applied Physics. 2008. 103 (7): 07E910-3.CrossRefGoogle Scholar
  62. 62.
    Crawford, G. P., OndrisCrawford, R. J., Doane, J. W.: Systematic study of orientational wetting and anchoring at a liquid-crystal-surfactant interface. Physical Review E. 53 (4), 3647–3661 (1996)CrossRefGoogle Scholar
  63. 63.
    Ooi, C., R.M. Erb, and B.B. Yellen, On the controllability of nanorod alignment in magnetic fluids. Journal of Applied Physics. 2008. 103 (7): 07E910-3.CrossRefGoogle Scholar
  64. 64.
    Tanase, M., Felton, E. J., Gray, D. S., Hultgren, A.: Chen, C. S., Reich, D. H., Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. Lab on a Chip. 5 (6), 598–605 (2005)CrossRefGoogle Scholar
  65. 65.
    Truskey, G. A., Yuan, F., Katz, D. F., Transport Phenomena in Biological Systems. Pearson Education, Inc., Upper Saddle River (2004)Google Scholar
  66. 66.
    Meyer, M., Le Ru, E. C., Etchegoin, P. G.: Self-limiting aggregation leads to long-lived metastable clusters in colloidal solutions. The Journal of Physical Chemistry B. 110 (12), 6040–6047 (2006)CrossRefGoogle Scholar
  67. 67.
    Ivanov, A. O., Kuznetsova, O. B.: Magnetic properties of dense ferrofluids: An influence of interparticle correlations. Physical Review E. 64 (4), 041405–12 (2001)CrossRefGoogle Scholar
  68. 68.
    da Silva, M. F., Neto, A. M. F.: Optical- and x-ray-scattering studies of ionic ferrofluids of MnFe2O4, y-Fe2O3, and CoFe2O4. Physical Review E. 48 (6), 4483–4491 (1993)CrossRefGoogle Scholar
  69. 69.
    Weber, J. E., Goni, A. R., Pusiol, D. J., Thomsen, C.: Raman spectroscopy on surfacted ferrofluids in a magnetic field. Physical Review E. 66 (2), 021407-06 (2002)CrossRefGoogle Scholar
  70. 70.
    Kruse, T., Krauthäuser, H. G., Spanoudaki, A., Pelster, R.: Agglomeration and chain formation in ferrofluids: Two-dimensional x-ray scattering. Physical Review B. 67 (9), 094206-10 (2003)CrossRefGoogle Scholar
  71. 71.
    Yellen, B. B., Fridman, G., Friedman, G.: Ferrofluid lithography. Nanotechnology 15 (10), S562–S565 (2004)CrossRefGoogle Scholar
  72. 72.
    Yellen, B. B., Friedman, G., Barbee, K. A.: Programmable self-aligning ferrofluid masks for lithographic applications. IEEE Transactions on Magnetics, 40 (4), 2994–2996 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceCenter for Biologically Inspired Materials and Material Systems, Duke UniversityDurhamUSA

Personalised recommendations