Skip to main content

FePt and Related Nanoparticles

  • Chapter
  • First Online:
Nanoscale Magnetic Materials and Applications

Abstract

This chapter reviews recent studies of chemically synthesized FePt and related nanoparticles. Various methods for synthesizing the nanoparticles and controlling their shape are described. Thermal effects in nanoparticles near the superparamagnetic limit are discussed. Some of the methods for reducing sintered grain growth during annealing to obtain the L10 phase are described, including the use of a hard shell, annealing in a salt matrix , and flash annealing . The effect of metal additives on the ordering temperature and on sintered grain growth is discussed. Additive Ag and Au significantly not only reduce the ordering temperature but also the grain growth temperature in close-packed 3-D arrays. Preliminary experiments that show additive Ag also reduces the ordering temperature when sintering is prevented. Easy-axis alignment of L10 FePt nanoparticles can be achieved by drying a nanoparticle dispersion in a magnetic field, and the effect of thermal fluctuations on orientation is discussed. Large particle-to-particle compositional distributions in chemically synthesized FePt nanoparticles have been measured. A method of determining the anisotropy distribution is described. Theoretical and experimental works showing the size effect on chemical ordering of FePt nanoparticles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Nano-EDS:

nano-beam energy dispersed spectrometry

HRTEM:

high-resolution transmission electron microscopy

SCA:

strong coupling approximation

TEM:

transmission electron microscopy

TEOS:

tetraethoxysilane

THF:

tetrahydrofuran

TMA:

tetramethylammonium

VSM:

vibrating sample magnetometer

XRD:

X-ray diffraction

ZFC:

zero-field-cooled

References

  1. Ahmadi, T.S., Wang, Z.L, Green, T.C., Henglein, A., ElSayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1926 (1996)

    Article  Google Scholar 

  2. Aslam, M., Fu, L., Li, S., Dravid, V.P.: Silica encapsulation and magnetic properties of FePt nanoparticles. J. Colloid. Interface Sci. 290, 444–449 (2005)

    Article  Google Scholar 

  3. Barmak, K., Kim, J., Berry, D.C., Wierman, K.W., Svedberg, E.B., Howard, J.K.: Calorimetric studies of the A1 to L10 transformation in FePt and related ternary alloy thin films. J. Appl. Phys. 95, 7486–7488 (2004)

    Article  Google Scholar 

  4. Brown, K.R., Walter, D.G., Natan, M.J.: Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem. Mater. 12, 306–313 (2000)

    Article  Google Scholar 

  5. Brust, M., Bethell, D., Schiffrin, D.J., Kiely C.J.: Novel gold-dithiol nano-networks with nonmetallic electronic properties. Adv. Mater. 7, 795–798 (1995)

    Article  Google Scholar 

  6. Burshtain, D., Zeiri, L., Efrima, S.: Control of colloid growth and size distribution by adsorption-silver nanoparticles and adsorbed anisate. Langmuir 15, 3050–3055 (1999)

    Article  Google Scholar 

  7. Chen, M., Kim, J., Liu, J.P., Fan, H.Y., Sun, S.H.: Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 128, 7132–7133 (2006)

    Article  Google Scholar 

  8. Chen, M., Nikles, D.E.: Synthesis, self-assembly, and magnetic properties of FexCoyPt100-x-ynanoparticles. Nano Lett. 2, 211–214 (2002)

    Article  Google Scholar 

  9. Chen, S.K., Yuan, F.T., Shiao, S.N.: Magnetic property modification of L10 FePt thin films by interfacial diffusion of Cu and Au overlayers. IEEE Trans. Magn. 41, 921–923 (2005)

    Article  Google Scholar 

  10. Chepulskii, R.V., Butler, W.H.: Temperature and particle-size dependence of the equilibrium order parameter order parameter of FePt alloys. Phys. Rev. B 72, 134205-1–134205-18 (2005)

    Article  Google Scholar 

  11. Chepulskii, R.V., Velev, J., Butler, W.H.: Monte Carlo Monte Carlo simulation of equilibrium L10 ordering in FePt nanoparticles. J. Appl. Phys. 97, 10J311-1–10J311-3 (2005)

    Article  Google Scholar 

  12. Elkins, K., Li D., Poudyal, N., Nandwana, V., Jin, Z., Chen, K., Liu, J.P.: Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D. Appl. Phys. 38, 2306–2309 (2006)

    Article  Google Scholar 

  13. Faraday, M.: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. B 147, 145–181 (1857)

    Google Scholar 

  14. Glavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C.: Borohydride reduction of nickel and copper ions in aqueous and nonaquoes media – controllable chemistry leading to nanoscale metal and metal boride particles. Langmuir 10, 4726–4730 (1994)

    Article  Google Scholar 

  15. Han, M.Y., Quek, C.H., Huang, W., Chew, C.H., Gan, L.M.: A simple and effective chemical route for the preparation of uniform nonaqueous gold colloids. Chem. Mater. 11, 1144–1147 (1999)

    Article  Google Scholar 

  16. Harrell, J.W.: Orientation dependence of the dynamic coercivity of Stoner-Wohlfarth particles. IEEE Trans. Magn. 37, 533–537 (2001)

    Article  Google Scholar 

  17. Harrell, J.W., Kang, S., Jia, Z., Nikles, D.E., Chantrell, R., Satoh, A.: Model for the easy-axis alignment of chemically synthesized L10 FePt nanoparticles. Appl. Phys. Lett. 87, 202508-1–202508-3 (2005a)

    Article  Google Scholar 

  18. Harrell, J.W., Nikles, D.E., Kang, S.S., Sun, X.C., Jia, Z.: Effect of additive Cu, Ag, and Au on L10 ordering of chemically synthesized FePt nanoparticles. J. Mag. Soc. Japan 28, 847–852 (2004)

    Google Scholar 

  19. Harrell, J.W., Nikles, D.E., Kang, S.S., Sun, X.C., Jia, Z., Shi, S., Lawson, J., Thompson, G.B., Srivastava, C., Seetala, N.V.: Effect of metal additives on L10 ordering of chemically synthesized FePt nanoparticles. Scripta Mater. 53, 411–416 (2005b)

    Article  Google Scholar 

  20. Hyun, C., Lee, D.C., Korgel, B.A., de Lozanne, A.: Micromagnetic study of single-domain FePt nanocrystals overcoated with silica. Nanotech. 18, 055704-1–055704-7 (2007)

    Article  Google Scholar 

  21. Jana, N.R., Gearheart, L., Murphy, C.J.: Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13, 2313–2322 (2001)

    Article  Google Scholar 

  22. Kang, S. et al.: Sintering behavior of spin-coated spin-coated FePt and FePtAu nanoparticles. J. Appl. Phys. 99, 08N704-1-08N704-3 (2006a)

    Google Scholar 

  23. Kang, S., Harrell, J.W., Nikles, D.E.: Reduction of ordering temperature of self-assembled FePt nanoparticles by the addition of Ag. Nano Lett 2, 1033–1036 (2002)

    Article  Google Scholar 

  24. Kang, S., Jia, Z., Nikles, D.E., Harrell J.W.: Synthesis and phase transition of self-assembled FePd and FePdPt nanoparticles. J. Appl. Phys. 95, 6744–6746 (2004)

    Article  Google Scholar 

  25. Kang, S., Jia, Z., Shi, S., Nikles, D.E., Harrell, J.W.: Easy axis alignment of chemically partially ordered FePt nanoparticles. Appl. Phys. Lett. 86, 062503-1–1062503-3 (2005)

    Google Scholar 

  26. Kang, S., Miao, G.X., Shi, S., Jia, Z., Nikles, D.E., Harrell, J.W.: Enhanced magnetic properties of self-Assembled FePt nanoparticles with MnO shell. J. Am. Chem. Soc. 128, 1042–1043 (2006b)

    Article  Google Scholar 

  27. Kang, S., Shi, S., Jia, Z. Thompson, G.B., Nikles, D.E., Harrell, J.W.: Microstructures and magnetic alignment of L10 FePt nanoparticles. J. Appl. Phys. 101, 09J113-1–09J113-1 (2007)

    Google Scholar 

  28. Kang, S.S., Jia, Z., Nikles, D.E., Harrell, J.W.: Synthesis, chemical ordering and magnetic properties of [FePt]1-xAux nanoparticles. IEEE Trans. Magn. 39, 2753–2757 (2003a)

    Article  Google Scholar 

  29. Kang, S.S., Nikles, D.E., Harrell, J.W.: Synthesis, chemical ordering and magnetic properties of FePt-Ag nanoparticles. J. Appl. Phys. 93, 7178–7180 (2003b)

    Article  Google Scholar 

  30. Lee, D.C., Mikulec, F.V., Pelaez, K., Koo, B., Korgel, B.A.: Synthesis and magnetic properties of silica-coated FePt nanocrystals. J. Phys. Chem. 110, 11160–11166 (2006)

    Google Scholar 

  31. Liu, J.P., Elkins, K., Li, D., Nandwana, V., Poudyal, N.: Phase transformation of FePt nanoparticles. IEEE Trans. Magn. 42, 3036–3031 (2006)

    Article  Google Scholar 

  32. Maeda, T., Kai, T., Kikitsu, A., Nagase, T., Akiyama, J.: Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu. Appl. Phys. Lett. 80, 2147–2149 (2002)

    Article  Google Scholar 

  33. Mayer, A.B.R., Grebner, W., Wannemacher, R.: Preparation of silver-latex composites. J. Phys. Chem. B 104, 7278–7285 (2000)

    Article  Google Scholar 

  34. McDaniel, T.W., Challener, W.A., Sendur, K.: Issues in heat-assisted perpendicular recording. IEEE Trans. Magn. 39, 1972–1979 (2003)

    Article  Google Scholar 

  35. Munro, C.H., Smith, W.E., Garner, M., Clarkson, J., White, P.C.: Characterization of the surface of a citrate reduced colloid optimized for use as a substrate for surface enhanced resonance Raman scattering. Langmuir 11, 3712–3720 (1995)

    Article  Google Scholar 

  36. Nishimura, K., Takahashi, K., Uchida, H., Inoue, M.: Effects of third elements (Ag, B, Cu, Ir) addition and high Ar gas pressure on L10 FePt films. J. Magn. Magn. Mater. 272, 2189–2190 (2004)

    Article  Google Scholar 

  37. Pathak, S., Greci, M.T., Kwong, R.C., Mercado, K., Prakash, G.K.S., Olah, G.A., Thompson, M.E.: Synthesis and applications of palladium-coated poly(vinylpyridine) nanospheres. Chem. Mater. 12, 1985–1989 (2000)

    Article  Google Scholar 

  38. Peng, Q.Z., Richter, H.J.: Field sweep rate dependence of media dynamic coercivity. IEEE Trans. Magn. 40, 2446–2448 (2004)

    Article  Google Scholar 

  39. Platt, C.L., Wierman, K.W., Svedberg, E.B., van de Veerdonk, R., Howard, J.K., Roy, A.G., Laughlin, D.E.: L10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive. J. Appl. Phys. 92, 6104–6109 (2002)

    Article  Google Scholar 

  40. Reed, D.: Use of silicate shells to prevent sintering during thermally induced chemical ordering of FePt nanoparticles. Ph.D. dissertation, University of Alabama (2007)

    Google Scholar 

  41. Rong, C. et al.: Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv. Mater. 18, 2984–2988 (2006)

    Article  Google Scholar 

  42. Salgueirino-Maceira, V., Correa-Duarte, M.A., Farle, M.: Manipulation of chemically synthesized FePt nanoparticles in water, core-shell silica/FePt nanocomposites. Small 1, 1073–1076 (2005)

    Article  Google Scholar 

  43. Scholz, W., Fidler, J., Schrefl, T., Suess, D., Forster, H., Dittrich, R., Tsiantos, V.: Numerical micromagnetic simulation of Fe-Pt nanoparticles with multiple easy axes. J. Magn. Magn. Mater. 272, 1524–1525 (2004)

    Article  Google Scholar 

  44. Sharrock, M.P., McKinney, J.T.: Kinetic effects in coercivity measurements. IEEE Trans. Magn. 17, 3020–3022 (1981)

    Article  Google Scholar 

  45. Shi, S., Kang, S., Lawson, J., Jia, Z., Nikles, D., Harrell, J.W., Ott, R., Kadolkar, P.: Pulsed-thermal processing of chemically synthesized FePt nanoparticles. JOM 58, 43–45 (2006)

    Article  Google Scholar 

  46. Shukla, N., Liu, C., Jones, P.M., Weller, D.: FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 36, 178–184 (2003)

    Article  Google Scholar 

  47. Srivastava, C., Balasubramanian, J., Turner, C.H., Wiest, J.M., Bagaria, H.G., Thompson, G.B.: Formation mechanism and composition distribution of FePt nanoparticles. J. Appl. Phys. 102, 104310 (2007)

    Article  Google Scholar 

  48. Srivastava, C., Thompson, G.B., Harrell, J.W., Nikles, D.E.: Size effect ordering in FePt100-xCrx nanoparticles. J. Appl. Phys. 99, 054304-1–054304-6 (2006)

    Google Scholar 

  49. Suess, D.: Multilayer exchange spring media for magnetic recording. Appl. Phys. Lett. 89, 113105-1–113105-3 (2006)

    Google Scholar 

  50. Sun, S.H., Anders, S., Thomson, T., Baglin, J.E.E., Toney, M.F., Hamann, H.F., Murray, C.B., Terris, B.D.: Controlled synthesis and assembly of FePt nanoparticles. J. Phys. Chem. B 107, 5419–5425 (2003a)

    Article  Google Scholar 

  51. Sun, S.H., Fullerton, E.E., Weller, D., Murray, C.B.: Compositionally controlled FePt nanoparticle materials. IEEE Trans. Magn. 37, 1239–1243 (2001)

    Article  Google Scholar 

  52. Sun, S.H., Murray, C.B.: Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4330 (1999)

    Article  Google Scholar 

  53. Sun, S.H., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  Google Scholar 

  54. Sun, X.C., Kang, S.S., Harrell, J.W., Nikles, D.E., Dai, Z.R., Li, J., Wang, Z.L.: Synthesis, chemical ordering, and magnetic properties of FePtCu nanoparticle films. J. Appl. Phys. 93, 7337–7339 (2003b)

    Article  Google Scholar 

  55. Torigoe, K., Suzuki, A., Esumi, K.: Au(III)-PAMAM interaction and formation of Au-PAMAM nanocomposites in ethyl acetate. J. Colloid. Interface Sci. 241, 346–356 (2001)

    Article  Google Scholar 

  56. Turkevich, J., Kim, G.: Palladium: preparation and catalytic properties of particles of uniform size. Science 169, 873–879 (1970)

    Article  Google Scholar 

  57. Tzitzios, V., Basina, G., Gjoka, M., Boukos, N., Niarchos, D., Devlin, E., Petridis, D.: The effect of Mn doping in FePt nanoparticles on the magnetic properties of the L1(0) phase. Nanotechnology 17, 4270–4273 (2006)

    Article  Google Scholar 

  58. Wang, C., Hou, Y.L., Kim, J.M., Sun, S.H.: A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. Int. Ed. 46, 6333–6335 (2007)

    Article  Google Scholar 

  59. Wang, J.G., Neoh, K.G., Kang, E.T.: Preparation of nanosized metallic particles in polyaniline. J. Colloid Interface Sci. 239, 78–86 (2001)

    Article  Google Scholar 

  60. Wang, S., Kang, S.S., Harrell, J.W., Wu, X.W., Chantrell, R.W.: Coercivity ratio and anisotropy distribution anisotropy distribution in chemically-synthesized L10 FePt nanoparticle systems. Phys. Rev. B 68, 104413-1–104413-7 (2003a)

    Google Scholar 

  61. Wang, S., Kang, S.S., Nikles, D.E., Harrell, J.W., Wu, X.W.: Magnetic properties of self-organized L10 FePtAg nanoparticle arrays. J. Magn. Magn. Mater. 266, 49–56 (2003b)

    Article  Google Scholar 

  62. Wang, Y., Ren, J.W., Deng, K., Gui, L.L., Tang, Y.Q.: Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 12, 1622–1627 (2000)

    Article  MATH  Google Scholar 

  63. Weller, D. et al.: High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10–15 (2000)

    Article  Google Scholar 

  64. Yamamoto, S, Morimoto, Y, Ono, T, Takano, M.: Magnetically superior and easy to handle L10-FePt nanocrystals. Appl. Phys. Lett. 87, 032503-1–032503-3 M (2005)

    Google Scholar 

  65. Yan, Q., Purkayastha, A., Kim, T., Kröger R., Bose, A., Ramanath, G.: Synthesis and assembly of monodisperse high-coercivity silica-capped FePt nanomagnets of tunable size, composition, and thermal stability thermal stability from microemulsions. Adv. Mater. 18, 2569–2573 (2006a)

    Article  Google Scholar 

  66. Yan, Q.Y., Kim, T., Purkayastha, A., Xu, Y., Shima, M., Gambino, R.J., Ramanath, G.: Magnetic properties of Sb-doped FePt nanoparticles. J. Appl. Phys. 99, 08N709-1–08N709-3 (2006b)

    Google Scholar 

  67. Yin, Y.D., Li, Z.Y., Zhong, Z.Y., Gates, B., Xia, Y.N., Venkateswaran, S.: Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem. 12, 522–527 (2002)

    Article  Google Scholar 

  68. Yu, A.C.C., Mizuno, M., Sasaki, Y., Kondo, H.: Atomic composition effect on the ordering of solution-phase synthesized FePt nanoparticle films. Appl. Phys. Lett. 85, 6242–6244 (2004)

    Article  Google Scholar 

  69. Yu, C.H., Caiulo, N., Lo, C.C.H., Tam, K., Tsang, S.C.: Synthesis and fabrication of a thin film containing silica-encapsulated face-centered tetragonal FePt nanoparticles. Adv. Mater. 18, 2312–2314 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the NSF Materials Research Science and Engineering Center Award No. DMR-0213985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.W. Harrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Harrell, J., Kang, S., Nikles, D.E., Thompson, G.B., Shi, S., Srivastava, C. (2009). FePt and Related Nanoparticles. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics