Growth and Properties of Epitaxial Chromium Dioxide (CrO2) Thin Films and Heterostructures

  • Guo-Xing Miao
  • Arunava Gupta


\({\rm CrO}_2\) is a remarkable ferromagnetic material that is simultaneously an excellent metal for majority spin electrons and an insulator for minority spin electrons [1–3]. For this reason, \({\rm CrO}_2\) is called a half-metal, and in fact, it is the only one experimentally demonstrated [4–6]. Because of this, \({\rm CrO}_2\) has received considerable interest for spintronic applications in recent years. Band structure calculations have shown that the conduction bands in the spin minority channel of this system are completely shifted away from the Fermi level, resulting in 100% spin polarization. This makes it an attractive choice as a ferromagnetic material for spin-dependent devices such as spin injectors and spin detectors. In this chapter, we briefly describe the bonding characteristics in \({\rm CrO}_2\), based on first principles band structure calculations, as well as discuss some of its intrinsic structural, electrical, and magnetic properties. The strain-induced magnetic anisotropy resulting from lattice mismatch with the substrates is also discussed. Finally, we provide some details regarding the fabrication of epitaxial rutile-based heterostructures and their transport properties in micron-sized tunnel junction and GMR devices.


Chemical Vapor Deposition Barrier Layer Magnetic Anisotropy Easy Axis Epitaxial Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Most of the work reviewed in this chapter has been carried out by the authors over a period of several years in collaboration with a number of other colleagues. We express our gratitude to all the collaborators for their contributions, support, and help. In particular, we would like to acknowledge Alexander Anguelouch, William Butler, Chia-Ling Chien, Supratik Guha, Srikanth Hariharan, Patrick LeClair, Xin-Wei Li, Stephen Pennycook, Maria Varela, and Gang Xiao.


  1. 1.
    K. Schwarz, J. Phys. F: Met. Phys. 16, L211 (1986).CrossRefGoogle Scholar
  2. 2.
    S. P. Lewis, P. B. Allen, and T. Sasaki, Phys. Rev. B 55, 10 253 (1996).Google Scholar
  3. 3.
    M. A. Korotin, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. Lett. 80, 4305 (1998).CrossRefGoogle Scholar
  4. 4.
    R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).CrossRefGoogle Scholar
  5. 5.
    Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, G. Xiao, and A. Gupta, Phys. Rev. Lett. 86, 5585 (2001).CrossRefGoogle Scholar
  6. 6.
    A. Anguelouch, A. Gupta, G. Xiao, D. W. Abraham, Y. Ji, S. Ingvarsson, and C. L. Chien, Phys. Rev. B 64, 180408R (2001).CrossRefGoogle Scholar
  7. 7.
    S. Ishibashi, T. Namikawa, and M. Satou, Mater. Res. Bull. 14, 51 (1979).CrossRefGoogle Scholar
  8. 8.
    X. W. Li, A. Gupta, and G. Xiao, Appl. Phys. Lett. 75, 713 (1999).CrossRefGoogle Scholar
  9. 9.
    K. Suzuki and P. M. Tedrow, Solid State Comm. 107, 583 (1998).CrossRefGoogle Scholar
  10. 10.
    A. Gupta, X. W. Li, S. Guha, and G. Xiao, Appl. Phys. Lett. 75, 2996 (1999).CrossRefGoogle Scholar
  11. 11.
    G. X. Miao, G. Xiao, and A. Gupta, Phys. Stat. Sol. A 203, 1513 (2006).CrossRefGoogle Scholar
  12. 12.
    J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).Google Scholar
  13. 13.
    T. Suzuki, Y. Nishi, and M. Fujimoto, Philos. Mag. A 79, 2461(1999).CrossRefGoogle Scholar
  14. 14.
    S. H. Oh, C. G. Park, J. Appl. Phys. 95, 4691 (2004).CrossRefGoogle Scholar
  15. 15.
    G. X. Miao, A. Gupta, G. Xiao, and A. Anguelouch, Thin Solid Films 478, 159 (2004).CrossRefGoogle Scholar
  16. 16.
    D. S. Rodbell, J. Phys. Soc. Jpn. 21, 1224 (1966).CrossRefGoogle Scholar
  17. 17.
    G. X. Miao, G. Xiao, and A. Gupta, Phys. Rev. B 71, 094418 (2005).CrossRefGoogle Scholar
  18. 18.
    B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, London, 1972).Google Scholar
  19. 19.
    J. W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).CrossRefGoogle Scholar
  20. 20.
    S. H. Oh and C. G. Park, J. Appl. Phys. 95, 4691 (2004).CrossRefGoogle Scholar
  21. 21.
    Y. Konishi, M. Kasai, M. Izuma, M. Kawasaki, and Y. Tokura, Mater. Sci. Eng. B 56, 158 (1998).CrossRefGoogle Scholar
  22. 22.
    Y. Yamamoto, K. Nakajima, T. Ohsawa, Y. Matsumoto, and H. Koinuma, Jpn. J. Appl. Phys. 44, L511 (2005).CrossRefGoogle Scholar
  23. 23.
    G. X. Miao, P. LeClair, A. Gupta, G. Xiao, M. Varela, and S. Pennycook, Appl. Phys. Lett. 89, 022511 (2007).CrossRefGoogle Scholar
  24. 24.
    A. Rosental, A. Tarre, A. Gerst, J. Sundqvist, A. Harsta, A. Aidla, J. Aarik, V. Sammelselg, and T. Uustare, Sens. Actu. B 93, 552 (2003).CrossRefGoogle Scholar
  25. 25.
    C. G. Fonstad and R. H. Rediker, J. Appl. Phys. 42, 2911 (1971).CrossRefGoogle Scholar
  26. 26.
    J. E. Dominguez, L. Fu, and X. Q. Pan, Appl. Phys. Lett. 81, 5168 (2002).CrossRefGoogle Scholar
  27. 27.
    J. S. Moodera, J. Nassar, and G. Mathon, Annu. Rev. Mater. Sci. 29, 381 (1999).CrossRefGoogle Scholar
  28. 28.
    A. Kilic, A. Zunger, Phys. Rev. Lett. 88, 095501-1 (2002), and references therein.CrossRefGoogle Scholar
  29. 29.
    E. Y. Tsymbal, D. G. Pettifor, Phys. Rev. B 64, 212401-1 (2001).CrossRefGoogle Scholar
  30. 30.
    E. Y. Tsymbal, A. Sokolov, I. F. Sabirianov, and B. Doudin, Phys. Rev. Lett. 90, 186602-1 (2003).CrossRefGoogle Scholar
  31. 31.
    L. Sheng, D. Y. Xing, and D. N. Sheng, Phys. Rev. B 69, 132414 (2004).CrossRefGoogle Scholar
  32. 32.
    M. Sharma, S. X. Wang, and J. H. Nickel, Phys. Rev. Lett. 82, 616 (1999).CrossRefGoogle Scholar
  33. 33.
    J. M. Teresa, A. Barthelemy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaures, Phys. Rev. Lett. 82, 4288 (1999).CrossRefGoogle Scholar
  34. 34.
    J. M. Teresa, A. Barthelemy, A. Fert, J. P. Contour, F. Montaigne, and P. Seneor, Science 286, 507 (1999).CrossRefGoogle Scholar
  35. 35.
    G. X. Miao, A. Gupta, H. Sims, W. H. Butler, S. Ghosh, and G. Xiao, J. Appl. Phys. 97, 10C924 (2005).CrossRefGoogle Scholar
  36. 36.
    G. X. Miao, Ph. D. thesis (Brown University, Providence, RI, 2006).Google Scholar
  37. 37.
    M. B. Sahana, G. N. Subbanna, and S. A. Shivashankar, J. Appl. Phys. 92, 6495 (2002).CrossRefGoogle Scholar
  38. 38.
    M. Schuisky and A. Harsta, J. Phys. IV 9, 381 (1999).CrossRefGoogle Scholar
  39. 39.
    Y. Kumashiro, A. Kinoshita, Y. Takaoka, and S. Murasawa, J. Ceramic Soc. Jpn. 101, 514 (1993).CrossRefGoogle Scholar
  40. 40.
    P. G. Ivanov, S. M. Watts, and D. M. Lind, J. Appl. Phys. 89, 1035 (2001).CrossRefGoogle Scholar
  41. 41.
    A. Gupta, X. W. Li, and G. Xiao, Appl. Phys. Lett. 78, 1894 (2001).CrossRefGoogle Scholar
  42. 42.
    N. A. Frey, S. Srinath, H. Srikanth, M. Varela, S. Pennycook, G. X. Miao, and A. Gupta, Phys. Rev. B 74, 024420 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Materials for Information Technology (MINT)The University of AlabamaTuscaloosaUSA

Personalised recommendations