Advertisement

Spintronics and Novel Magnetic Materials for Advanced Spintronics

  • Jiwei Lu
  • Kevin G. West
  • Jiani Yu
  • Wenjing Yin
  • David M. Kirkwood
  • Li He
  • Robert Hull
  • Stuart A. Wolf
  • Daryl M. Treger
Chapter

Abstract

This chapter contains both the description of advanced spintronic devices for logic and memory applications and the synthesis and characterization of some new magnetic materials that would lead to new paradigms in spintronics. The first part gives a brief introduction to spintronics and its history. First-generation spintronics has entered the mainstream of information technology through its utilization of the magnetic tunnel junction in applicable devices such as read head sensors for hard disk drives and magnetic random access memory. We also discuss the conceptual spintronic devices, including spin torque transfer random access memory, spin-polarized field-effect transistor, and spin-based qubit quantum processor, and their potential impacts on information technology. The future of spintronic devices requires next-generation spintronic materials. The second part of the chapter is dedicated to the synthesis and characterization of some novel magnetic materials, including ferromagnetic oxides and diluted magnetic Group IV semiconductors.

Keywords

TiO2 Thin Film Spintronic Device Vanadium Dioxide Anomalous Hall Effect Saturation Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors thank for the financial support from the Defense Advanced Research Projects Agency (DARPA), the Office of Naval Research (ONR), the Defense Microelectronics Activity (DMEA), and the joint program of National Science Foundation and Nanoelectronics Research Initiative (NRI).

Additional Reading on Spintronics

  1. S. Wolf and D. Treger, Spintronics: A new paradigm for electronics for the new millennium, IEEE Trans. Magnet. 36, 2748 (2000).CrossRefGoogle Scholar
  2. Proceedings of the IEEE special issue on Spintronics Technology, May 2003, vol. 91, no. 5.Google Scholar
  3. S. Wolf et al., Spintronics: A spin-based electronics vision for the future, Science 294, 1488–1495 (2001).CrossRefGoogle Scholar

References

  1. 1.
    I.K. Schuller. Transport properties of the compositionally modulated alloy Cu/Ni. in AIP Conf. Proc. 1979.Google Scholar
  2. 2.
    M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Physical Review Letters, 1988. 61(21): 2472–2475.CrossRefGoogle Scholar
  3. 3.
    G.A. Prinz, Device physics – Magnetoelectronics. Science, 1998. 282(5394): 1660–1663.CrossRefGoogle Scholar
  4. 4.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Spintronics: A spin-based electronics vision for the future. Science, 2001. 294(5546): 1488–1495.CrossRefGoogle Scholar
  5. 5.
    S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, and W.J. Gallagher, Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). Journal of Applied Physics, 1999. 85(8): 5828–5833.CrossRefGoogle Scholar
  6. 6.
    M. Durlam, D. Addie, J. Akerman, B. Butcher, P. Brown, J. Chan, M. DeHerrera, B.N. Engel, B. Feil, G. Grynkewich, J. Janesky, M. Johnson, K. Kyler, J. Molla, J. Martin, K. Nagel, J. Ren, N.D. Rizzo, T. Rodriguez, L. Savtchenko, J. Salter, J.M. Slaughter, K. Smith, J.J. Sun, M. Lien, K. Papworth, P. Shah, W. Qin, R. Williams, L. Wise, and S. Tehrani, A 0.18 μm 4 MB Toggling MRAM. IEDM Technical Digest, 2003, pp. 34.6.1–34.6.3.Google Scholar
  7. 7.
    D. Lammers, Freescale begins selling 4-Mbit MRAM. 2006. EE Times.Google Scholar
  8. 8.
    L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 1996. 54(13): 9353–9358.CrossRefGoogle Scholar
  9. 9.
    J.C. Slonczewski, Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 1996. 159(1–2): L1–L7.CrossRefGoogle Scholar
  10. 10.
    J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, and D.C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Physical Review Letters, 2000. 84(14): 3149–3152.CrossRefGoogle Scholar
  11. 11.
    International Technology Roadmap for Semiconductors, (2006).Google Scholar
  12. 12.
    K.C. Hall, W.H. Lau, K. Gundogdu, M.E. Flatte, and T.F. Boggess, Nonmagnetic semiconductor spin transistor. Applied Physics Letters, 2003. 83(14): 2937–2939.CrossRefGoogle Scholar
  13. 13.
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001. 291(5505): 854–856.CrossRefGoogle Scholar
  14. 14.
    H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science, 1998. 281(5379): 951–956.CrossRefGoogle Scholar
  15. 15.
    D.P. Divincenzo, Quantum computation. Science, 1995. 270(5234): 255–261.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    A. Steane, Quantum computing. Reports on Progress in Physics, 1998. 61(2): 117–173.MathSciNetCrossRefGoogle Scholar
  17. 17.
    V.V. Zhurin, H.R. Kaufman, J.R. Kahn, and T.L. Hylton, Biased target deposition. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 2000. 18(1): 37–41.CrossRefGoogle Scholar
  18. 18.
    J.J. Quan, S.A. Wolf, and H.N.G. Wadley, Low energy ion beam assisted deposition of a spin valve. Journal of Applied Physics, 2007. 101(7): 074302.Google Scholar
  19. 19.
    J.J. Quan, X.W. Zhou, and H.N.G. Wadley, Low energy ion assisted atomic assembly of metallic superlattices. Surface Science, 2006. 600(11): 2275–2287.CrossRefGoogle Scholar
  20. 20.
    S. von Molnar, Spin electronics: From concentrated to diluted magnetic semiconductors and beyond. Journal of Superconductivity, 2003. 16(1): 1–5.MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.M.D. Coey and C.L. Chien, Half-metallic ferromagnetic oxides. Mrs Bulletin, 2003. 28(10): 720–724.CrossRefGoogle Scholar
  22. 22.
    K. Suzuki and P.M. Tedrow, Resistivity and magnetotransport in CrO2 films. Physical Review B, 1998. 58(17): 11597–11602.CrossRefGoogle Scholar
  23. 23.
    X.W. Li, A. Gupta, T.R. McGuire, P.R. Duncombe, and G. Xiao, Magnetoresistance and hall effect of chromium dioxide epitaxial thin films. Journal of Applied Physics, 1999. 85(8): 5585–5587.CrossRefGoogle Scholar
  24. 24.
    R.J. Soulen, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, and J.M.D. Coey, Measuring the spin polarization of a metal with a superconducting point contact. Science, 1998. 282(5386): 85–88.CrossRefGoogle Scholar
  25. 25.
    K. Schwarz, Cro2 Predicted as a half-metallic ferromagnet. Journal of Physics F-Metal Physics, 1986. 16(9): L211–L215.CrossRefGoogle Scholar
  26. 26.
    H.A. Bullen and S.J. Garrett, Epitaxial growth of CrO2 thin films on TiO2(110) surfaces. Chemistry of Materials, 2002. 14(1): 243–248.CrossRefGoogle Scholar
  27. 27.
    W.J. DeSisto, P.R. Broussard, T.F. Ambrose, B.E. Nadgorny, and M.S. Osofsky, Highly spin-polarized chromium dioxide thin films prepared by chemical vapor deposition from chromyl chloride. Applied Physics Letters, 2000. 76(25): 3789–3791.CrossRefGoogle Scholar
  28. 28.
    S.J. Liu, J.Y. Juang, K.H. Wu, T.M. Uen, Y.S. Gou, and J.Y. Lin, Transport properties of CrO2 (110) films grown on TiO2 buffered Si substrates by chemical vapor deposition. Applied Physics Letters, 2002. 80(22): 4202–4204.CrossRefGoogle Scholar
  29. 29.
    L. Ranno, A. Barry, and J.M.D. Coey, Production and magnetotransport properties of CrO2 films. Journal of Applied Physics, 1997. 81(8): 5774–5776.CrossRefGoogle Scholar
  30. 30.
    K. Kohler, M. Maciejewski, H. Schneider, and A. Baiker, Chromia supported on titania .5. Preparation and characterization of supported CrO 2 , CrOOH, and Cr2O 3. Journal of Catalysis, 1995. 157(2): 301–311.CrossRefGoogle Scholar
  31. 31.
    K.G. West, J.W. Lu, J. Yu, D.M. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S.A. Wolf, Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition. Journal of Vacuum Science & Technology A, 2008. 26(1): 133–139.CrossRefGoogle Scholar
  32. 32.
    Y. Matsumoto, R. Takahashi, M. Murakami, T. Koida, X.J. Fan, T. Hasegawa, T. Fukumura, M. Kawasaki, S.Y. Koshihara, and H. Koinuma, Ferromagnetism in co-doped TiO 2 rutile thin films grown by laser molecular beam epitaxy. Japanese Journal of Applied Physics Part 2-Letters, 2001. 40(11B): L1204–L1206.CrossRefGoogle Scholar
  33. 33.
    H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor. Nature Materials, 2004. 3(4): 221–224.CrossRefGoogle Scholar
  34. 34.
    S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni, R. Ramesh, R.L. Greene, and T. Venkatesan, Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO 2 -delta films. Physical Review Letters, 2004. 92(16): 166601.Google Scholar
  35. 35.
    D.H. Kim, J.S. Yang, K.W. Lee, S.D. Bu, T.W. Noh, S.J. Oh, Y.W. Kim, J.S. Chung, H. Tanaka, H.Y. Lee, and T. Kawai, Formation of Co nanoclusters in epitaxial Ti0.96Co0.04O2 thin films and their ferromagnetism. Applied Physics Letters, 2002. 81(13): 2421–2423.CrossRefGoogle Scholar
  36. 36.
    S.A. Chambers, Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics. Surface Science Reports, 2006. 61(8): 345–381.CrossRefGoogle Scholar
  37. 37.
    H. Munekata, H. Ohno, S. Vonmolnar, A. Segmuller, L.L. Chang, and L. Esaki, Diluted magnetic III-V semiconductors. Physical Review Letters, 1989. 63(17): 1849–1852.CrossRefGoogle Scholar
  38. 38.
    J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van Hoof, and G. Borghs, Nanometer-scale magnetic MnAs particles in GaAs grown by molecular beam epitaxy. Applied Physics Letters, 1996. 68(19): 2744–2746.CrossRefGoogle Scholar
  39. 39.
    H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Applied Physics Letters, 1996. 69(3): 363–365.CrossRefGoogle Scholar
  40. 40.
    D.D. Awschalom and M.E. Flatté, Challenges for semiconductor spintronics. Nature Physics, 2007. 3(3): 153–159.CrossRefGoogle Scholar
  41. 41.
    A. Stroppa, S. Picozzi, A. Continenza, and A.J. Freeman, Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors. Physical Review B, 2003. 68(15): 155203 .Google Scholar
  42. 42.
    H.M. Weng and J.M. Dong, First-principles investigation of transition-metal-doped group-IV semiconductors: R(x)Y1(-x) (R=Cr,Mn,Fe;Y=Si,Ge). Physical Review B, 2005. 71(3): 035201.Google Scholar
  43. 43.
    Y.D. Park, A. Wilson, A.T. Hanbicki, J.E. Mattson, T. Ambrose, G. Spanos, and B.T. Jonker, Magnetoresistance of Mn: Ge ferromagnetic nanoclusters in a diluted magnetic semiconductor matrix. Applied Physics Letters, 2001. 78(18): 2739–2741.CrossRefGoogle Scholar
  44. 44.
    Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, and B.T. Jonker, A group-IV ferromagnetic semiconductor: MnxGe1-x. Science, 2002. 295(5555): 651–654.CrossRefGoogle Scholar
  45. 45.
    L.F. Liu, N.F. Chen, C.L. Chen, Y.L. Li, Z.G. Yin, and F. Yang, Magnetic properties of Mn-implanted n-type Ge. Journal of Crystal Growth, 2004. 273(1–2): 106–110.Google Scholar
  46. 46.
    J.S. Kang, G. Kim, S.C. Wi, S.S. Lee, S. Choi, S. Cho, S.W. Han, K.H. Kim, H.J. Song, H.J. Shin, A. Sekiyama, S. Kasai, S. Suga, and B.I. Min, Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductors. Physical Review Letters, 2005. 94(14): 147202.Google Scholar
  47. 47.
    A.P. Li, J.F. Wendelken, J. Shen, L.C. Feldman, J.R. Thompson, and H.H. Weitering, Magnetism in MnxGe1-x semiconductors mediated by impurity band carriers. Physical Review B, 2005. 72(19): 195205.Google Scholar
  48. 48.
    N. Pinto, L. Morresi, M. Ficcadenti, R. Murri, F. D’Orazio, F. Lucari, L. Boarino, and G. Amato, Magnetic and electronic transport percolation in epitaxial Ge1-xMnx films. Physical Review B, 2005. 72(16): 165203.Google Scholar
  49. 49.
    S. Ahlers, D. Bougeard, N. Sircar, G. Abstreiter, A. Trampert, M. Opel, and R. Gross, Magnetic and structural properties of GexMn1-x films: Precipitation of intermetallic nanomagnets. Physical Review B, 2006. 74(21): 214411.Google Scholar
  50. 50.
    M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, High-Curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns. Nature Materials, 2006. 5(8): 653–659.CrossRefGoogle Scholar
  51. 51.
    L. Ottaviano, P. Parisse, M. Passacantando, S. Picozzi, A. Verna, G. Impellizzeri, and F. Priolo, Nanometer-scale spatial inhomogeneities of the chemical and electronic properties of an ion implanted Mn-Ge alloy. Surface Science, 2006. 600(20): 4723–4727.CrossRefGoogle Scholar
  52. 52.
    M. Passacantando, L. Ottaviano, F. D’Orazio, F. Lucari, M. De Biase, G. Impellizzeri, and F. Priolo, Growth of ferromagnetic nanoparticles in a diluted magnetic semiconductor obtained by Mn+ implantation on Ge single crystals. Physical Review B, 2006. 73(19): 195207.Google Scholar
  53. 53.
    J.J. Chen, K.L. Wang, and K. Galatsis, Electrical field control magnetic phase transition in nanostructured MnxGe1-x. Applied Physics Letters, 2007. 90(1): 012501.Google Scholar
  54. 54.
    D. Bougeard, S. Ahlers, A. Trampert, N. Sircar, and G. Abstreiter, Clustering in a precipitate-free GeMn magnetic semiconductor. Physical Review Letters, 2006. 97(23): 237202.Google Scholar
  55. 55.
    H.L. Li, Y.H. Wu, Z.B. Guo, P. Luo, and S.J. Wang, Magnetic and electrical transport properties of Ge1-xMnx thin films. Journal of Applied Physics, 2006. 100(10): 103908.Google Scholar
  56. 56.
    A.P. Li, C. Zeng, K. van Benthem, M.F. Chisholm, J. Shen, S.V.S.N. Rao, S.K. Dixit, L.C. Feldman, A.G. Petukhov, M. Foygel, and H.H. Weitering, Dopant segregation and giant magnetoresistance in manganese-doped germanium. Physical Review B, 2007. 75(20).Google Scholar
  57. 57.
    N. Yamada, Atomic magnetic-moment and exchange interaction between Mn atoms in intermetallic compounds in Mn-Ge system. Journal of the Physical Society of Japan, 1990. 59(1): 273–288.CrossRefGoogle Scholar
  58. 58.
    C.G. Zeng, S.C. Erwin, L.C. Feldman, A.P. Li, R. Jin, Y. Song, J.R. Thompson, and H.H. Weitering, Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Applied Physics Letters, 2003. 83(24): 5002–5004.CrossRefGoogle Scholar
  59. 59.
    A. Kaminski and S. Das Sarma, Polaron percolation in diluted magnetic semiconductors. Physical Review Letters, 2002. 88(24): 247202.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jiwei Lu
    • 1
  • Kevin G. West
    • 1
  • Jiani Yu
    • 1
  • Wenjing Yin
    • 1
  • David M. Kirkwood
    • 1
  • Li He
    • 1
  • Robert Hull
    • 1
  • Stuart A. Wolf
    • 1
  • Daryl M. Treger
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Strategic AnalysisArlingtonUSA

Personalised recommendations