Advertisement

Magnetocaloric Effect and Materials

  • J.R. Sun
  • B.G. Shen
  • F.X. Hu
Chapter

Abstract

A brief review for magnetocaloric effect (MCE), including its potential application to magnetic refrigeration and the corresponding magnetic materials, has been given. Focuses are recent progresses in the exploration of magnetocaloric materials which exhibit a first-order phase transition, thus a giant MCE. Special issues such as proper approaches to determine the MCE associated with the first-order transition and the effects of lattice and electronic entropies are discussed. The applicability of the giant MCE materials to the magnetic refrigeration near ambient temperature is evaluated.

Keywords

Entropy Change Magnetocaloric Effect Heusler Alloy Magnetic Entropy Change Magnetic Refrigeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Mrs. Jia Lin for her assistant in preparing part of the figures.

References

  1. 1.
    E. Warburg, Ann. Phys. 13, 141 (1881).MATHGoogle Scholar
  2. 2.
    P. Langevin, Ann. Chim. Phy. 5, 70 (1905).MATHGoogle Scholar
  3. 3.
    P. Debye, Ann. Phys. 81, 1154 (1926).MATHGoogle Scholar
  4. 4.
    W. F. Giauque, J. Amer. Chem. Soc. 49, 1864 (1927).Google Scholar
  5. 5.
    W. F. Giauque, I. D. P. MacDougall, Phys. Rev. 43, 768 (1933).Google Scholar
  6. 6.
    P. J. Hakonen, S. Yin, and O. V. Lounasmaa, Phys. Rev. Lett. 64, 2707 (1990).Google Scholar
  7. 7.
    W. F. Giauque, J. Amer. Chem. Soc. 49, 1864 (1927); W. F. Giauque and D. P. McDougall, Phys. Rev. 43, 768 (1933).Google Scholar
  8. 8.
    R. D. McMichael, J. J. Ritter, and R. D. Shull, J. Appl. Phys. 73, 6946 (1993); R. D. Shull and R. D. McMichael, Nanostructure Mater. 2, 205 (1993); R. D. Shull, IEEE Trans. Magn. 29, 2614 (1993).Google Scholar
  9. 9.
    T. Hashimoto, T. Kuzuhara, M. Sahashi, K. Inomata, A. Tomokiyo and H. Yayama, J Appl. Phys. 62, 3873 (1987).Google Scholar
  10. 10.
    T. Hashimoto, T. Kuzuhara, K. Matsumoto, M. Sahashi, K. Imonata, A. Tomokiyo, and H. Yayama, IEEE Trans. Mag. MAG-23, 2847 (1987).Google Scholar
  11. 11.
    Tishin A. M. and Y. I. Spichkin, The magnetocaloric effect and its application, IOP Publishing Ltd, 2003.Google Scholar
  12. 12.
    G. V. Brown, J. Appl. Phys. 47, 3673 (1976).Google Scholar
  13. 13.
    C. Zimm, A. Jastrab, A. Sternberg, V. K. Pecharsky, K. Gschneidner Jr, M. Osborne, and I. Anderson, Adv. Cryog. Eng. 43, 1759 (1998).Google Scholar
  14. 14.
    V. K. Pecharsky and K. A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).Google Scholar
  15. 15.
    V. K. Pecharsky and K. A. Gschneidner Jr., Appl. Phys. Lett. 70, 3299 (1997).Google Scholar
  16. 16.
    F. X. Hu, B. G. Shen, J. R. Sun, and X. X. Zhang, Chinese Phys. 9, 550 (2000).Google Scholar
  17. 17.
    F. X. Hu, B. G. Shen, J. R. Sun, and Z. H. Cheng, Appl. Phys. Lett. 78, 3675 (2001).Google Scholar
  18. 18.
    H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).Google Scholar
  19. 19.
    O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).Google Scholar
  20. 20.
    V. K. Pecharsky and K. A. Gschneidner Jr., J. Appl. Phys. 86, 565 (1999).Google Scholar
  21. 21.
    J. R. Sun, F. X. Hu, and B. G. Shen, Phys. Rev. Lett. 85, 4191 (2000).Google Scholar
  22. 22.
    G. J. Liu, J. R. Sun, J. Shen, B. Gao, H. W. Zhang, F. X. Hu, and B. G. Shen, Appl. Phys. Lett. 90, 032507 (2007).Google Scholar
  23. 23.
    A. de Campos, D. L. Rocco, A. M. G. Carvalho, L. Caron, A. A. Coelho, S. Gama, L. M. da Silva, F. C. G. Gandra, A. D. dos Santos, L. P. Cardoso, P. J. von Rank, and N. A. de Oliveira, Nat. Mater. 5, 802 (2006).Google Scholar
  24. 24.
    A. Giguère, M. Foldeaki, B. Ravi Gopal, R. Chahine, T. K. Bose, A. Frydman, and J. A. Barclay, Phys. Rev. Lett. 83, 2262 (1999).Google Scholar
  25. 25.
    S. Gama, A. A. Coelho, A. de Campos, A. Magnus G. Carvalho, and F. C.G. Gandra, Phys. Rev. Lett. 93, 237202 (2004).Google Scholar
  26. 26.
    A. A. Coelho, S. Gama, F. C. G. Gandra, A. O. dos Santos, L. P. Cardoso, P. J. von Ranke, and N. A. de Oliveira, Appl. Phys. Lett. 90, 242507 (2007).Google Scholar
  27. 27.
    G. J. Liu, J. R. Sun, J. Z. Wang, and B. G. Shen, Appl. Phys. Lett. 89, 22503 (2006).Google Scholar
  28. 28.
    V. K. Pecharsky, K. A. Gschneidner Jr., J. Magn. Magn. Mater. 200, 44 (1999).Google Scholar
  29. 29.
    K. H. J. Buschow, Rep. Progr. Phys. 40, 1179 (1977).Google Scholar
  30. 30.
    P. I. Kripyakevich, O. S. Zarechnyuk, E. I. Gladushevsky, and O. I. Bodak, Z. Anorg. Chem. 358, 90 (1968).Google Scholar
  31. 31.
    T. T. M. Palstra, J. A. Mydosh, G. J. Nieuwenhuys, A. M. van der Kraan, and K. H. J. Buschow, J. Magn. Magn. Mater. 36, 290 (1983).Google Scholar
  32. 32.
    T. T. M. Palstra, G. J. Nieuwenhuys, J. A. Mydosh and K. H. J. Buschow, Phys. Rev. B 31, 4622 (1985).Google Scholar
  33. 33.
    R. B. Helmholdt, T. T. M. Palstra, G. J. Nieuwenhuys, J. A. Mydosh, A. M. van der Kraan, and K. H. J. Buschow, Phys. Rev. B 34, 169 (1986).Google Scholar
  34. 34.
    W. H. Tang, J. K. Liang, G. H. Rao, and X. Yan, Phys. Stat. Sol. 141, 217 (1994).Google Scholar
  35. 35.
    A. Fujita and K. Fukamichi, IEEE. Magb. 35, 3796 (1999).Google Scholar
  36. 36.
    A. Fujita, Y. Akamatsu, and K. Fukamichi, J. Appl. Phys. 85, 4756 (1999).Google Scholar
  37. 37.
    F. X. Hu, Magnetic properties and magnetic entropy change of Fe-based La(Fe,M) 13 compounds and Ni-Mn-Ga alloys, Ph. D thesis, Institute of Physics of Chinese academy of Sciences, 2002.Google Scholar
  38. 38.
    L. Jia, J. R. Sun, J. Shen, B. Gao, and B. G. Shen (unpublished).Google Scholar
  39. 39.
    A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, Phys. Rev. B 67, 104416 (2003).Google Scholar
  40. 40.
    G. J. Wang, F. Wang, N. L. Di, B. G. Shen, and Z. H. Cheng, J. Magn. Magn. Mater. 303, 84 (2006).Google Scholar
  41. 41.
    F. Wang, J. Zhang, Y. F. Chen, G. J. Wang, J. R. Sun, S. Y. Zhang, and B. G. Shen, Phys. Rev. B 69, 094424 (2004).Google Scholar
  42. 42.
    F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, and X. X. Zhang, J. Phys.: Condens. Matter 12, L691 (2000).Google Scholar
  43. 43.
    F. W. Wang, G. J. Wang, F. X. Hu, A. Kurbakov, B. G. Shen, and Z. H. Cheng, J. Phys.: Condens. Matter 15, 5269(2003).Google Scholar
  44. 44.
    L. Jia, J. R. Sun, H. W. Zhang, F. X. Hu, C. Dong, and B. G. Shen, J. Phys.: Condens. Matter 18, 9999 (2006).Google Scholar
  45. 45.
    A. Fujita, S. Fujieda, K. Fukamichi, Y. Yamazaki, Y. Iijima, Mater. Trans. 43, 1202 (2002).Google Scholar
  46. 46.
    S. Fujieda, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 81, 1276 (2002).Google Scholar
  47. 47.
    F. X. Hu, J. Gao, X. L. Qian, M. Ilyn, A. M. Tishin, J. R. Sun, and B. G. Shen, J. Appl. Phys. 97, 10M303 (2005).Google Scholar
  48. 48.
    M. Balli, D. Fruchart, and D. Gignoux, J. Phys.: Condens. Matter 19, 236230 (2007).Google Scholar
  49. 49.
    F. Wang, J. Zhang, Y. F. Chen, G. J. Wang, J. R. Sun, S. Y. Zhang, and B. G. Shen, Phys. Rev. B 69, 094424 (2004).Google Scholar
  50. 50.
    S. Fujieda, A. Fujita, N. Kawamoto, and K. Fukamichi, Appl. Phys. Lett. 89, 062504 (2006).Google Scholar
  51. 51.
    D. T. Kim Anh, N. P. Thuy a,b, N. H. Duca, T. T. Nhiena, and N. V. Nong, J. Magn. Magn. Mater. 262, 427 (2003).Google Scholar
  52. 52.
    S. Fujieda, A. Fujita, and K. Fukamichi, Mater. Trans. 45, 3228 (2004).Google Scholar
  53. 53.
    S. Fujieda, A. Fujita, and K. Fukamichi, IEEE Trans. Magn. 41, 2787 (2005).Google Scholar
  54. 54.
    S. Fujieda, A. Fujita, K. Fukamichi, N. Hirano, and S. Nagaya, J. Alloys. Comp. 408–412, 1165 (2006).Google Scholar
  55. 55.
    S. Fujieda, A. Fujita, N. Kawamoto, and K. Fukamichi, J. Appl. Phys. 99, 08K910 (2006).Google Scholar
  56. 56.
    A. Fujita, S. Fujieda, and K. Fukamichi, J. Magn. Magn. Mater. 310, E1006–E1007 (2007).Google Scholar
  57. 57.
    J. Shen, Y. X. Li, B. Gao, F. X. Hu, J. R. Sun, and B. G. Shen (unpublished).Google Scholar
  58. 58.
    J. Shen, B. Gao, L. Q. Yan, Y. X. Li, H. W. Zhang, F. X. Hu, and J. R. Sun, Chinese Phys. 16, 3848 (2007).Google Scholar
  59. 59.
    S. Fujieda, A. Fujita, and K. Fukamichi, J. Magn. Magn. Mater. 310, e1004 (2007).Google Scholar
  60. 60.
    S. Fujieda, A. Fujita, and K. Fukamichi, J. Appl. Phys. 102, 023907 (2007).Google Scholar
  61. 61.
    Sun et al. unpublished.Google Scholar
  62. 62.
    S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki, and Y. Iijima, Appl. Phys. Lett. 79, 653 (2001).Google Scholar
  63. 63.
    A. Fujita, S. Fujieda, K. Fukamichi, Y. Yamazaki, and Y. Iijima, Mater. Trans. 43, 1202–1204 (2002).Google Scholar
  64. 64.
    A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, Phys. Rev. B 67, 104416 (2003).Google Scholar
  65. 65.
    Y. F. Chen, F. Wang, B. G. Shen, F. X. Hu, Z. H. Cheng, G. J. Wang, and J. R. Sun, Chin. Phys. 11, 741 (2002).Google Scholar
  66. 66.
    Y. F. Chen, F. Wang, B. G. Shen, F. X. Hu, J. R. Sun, G. J. Wang, and Z. H. Cheng, J. Phys.: Condens. Matter 15, L161–L167 (2003).Google Scholar
  67. 67.
    Z. X. Tang, X. H. Deng, G. C. Hadjipanayis, V. Papaefthymiou and D. J. Sellmyer, IEEE Trans. Magn. 29, 2839 (1993).Google Scholar
  68. 68.
    J. P. Liu, N. Tang, F. R. de Boer, P. F. de Chatel, and K. H. J. Buschow, J. Magn. Magn. Mater. 140–144, 1035 (1995).Google Scholar
  69. 69.
    O. Moze, W. Kockelmann, J. P. Liu, F. R. de Boer, and K. H. J. Buschow, J. Magn. Magn. Mater. 195, 391 (1999).Google Scholar
  70. 70.
    O. Moze, W. Kockelmann, J. P. Liu, F. R. de Boer, and K. H. J. Buschow, J. Appl. Phys. 87, 5284 (2000).Google Scholar
  71. 71.
    K. Irisawa, A. Fujita, K. Fukamichi, Y. Yamazaki, Y. Iijima, and E. Matsubara, J. Alloys Comp. 316, 70 (2001).Google Scholar
  72. 72.
    S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki, and Y. Iijima, Appl. Phys. Lett. 79, 653 (2001).Google Scholar
  73. 73.
    K. Fukamichi, A. Fujita, and S. Fujieda, J. Alloys Comp. 408–412, 307 (2006).Google Scholar
  74. 74.
    S. Fujieda, A. Fujita, and K. Fukamichi, J. Appl. Phys. 102, 023907 (2007).Google Scholar
  75. 75.
    F. Wang, Magnetic and magnetocaloric properties of NaZn 13-type La(Fe,M)13 intermetallics, Ph.D. thesis, Institute of Physics of Chinese Academy of Sciences, 2004.Google Scholar
  76. 76.
    Y. F. Chen, F. Wang, B. G. Shen, F. X. Hu, J. R. Sun, G. J. Wang, and Z. H. Cheng, J. Appl. Phys. 93, 1323 (2003).Google Scholar
  77. 77.
    L. Jia, J. R. Sun, J. Shen, B. Gao, T. Y. Zhao, H. W. Zhang, F. X. Hu, and B. G. Shen (unpublished).Google Scholar
  78. 78.
    J. Shen, B. Gao, H. W. Zhang, F. X. Hu, Y. X. Li, J. R. Sun, and B. G. Shen, Appl. Phys. Lett. 91, 142504 (2007).Google Scholar
  79. 79.
    X. X. Zhang, G. H. Wen, F. W. Wang, W. H. Wang, C. H. Yu, and G. H. Wu, Appl. Phys. Lett. 77, 3072 (2000).Google Scholar
  80. 80.
    A. O. Pecharsky, K. A. Gschneidner Jr., V. K. Pecharsky, and C. E. Schindler, J. Alloys Comp. 338, 126 (2002).Google Scholar
  81. 81.
    V. K. Pecharsky, A. O. Pecharsky, and K. A. Gschneidner Jr., J. Alloys Comp. 344, 362 (2002).Google Scholar
  82. 82.
    A. O. Pecharsky, K. A. Gschneidner Jr., and V. K. Pecharsky, J. Magn. Magn. Mater. 267, 60 (2003).Google Scholar
  83. 83.
    Y. Zhuo, R. Chahine, and T. K. Bose, IEEE Trans. Magn. 39, 3358 (2003).Google Scholar
  84. 84.
    A. Giguìere, M. Foldeaki, B. R. Gopal, R. Chahine, T. K. Bose, A. Frydman, and J. A. Barclay, Phys. Rev. Lett. 83, 2262 (1999).Google Scholar
  85. 85.
    K. A. Gschneidner Jr., V. K. Pecharsky, E. Brück, H. G. M. Duijn, and E. M. Levin, Phys. Rev. Lett. 85, 4190 (2000).Google Scholar
  86. 86.
    K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokoll, Rep. Prog. Phys. 68, 1479 (2005).Google Scholar
  87. 87.
    F. Holtzberg, R. J. Gambino, T. R. McGuire, J. Phys. Chem. Solids, 28, 2283 (1967).Google Scholar
  88. 88.
    A. O. Pecharsky, K. A. Gschneidner Jr., and V. K. Pecharsky, J. Appl. Phys. 93, 4722 (2003).Google Scholar
  89. 89.
    V. K. Pecharsky and K. A. Gschneidner Jr., J. Magn. Magn. Mater. 167, L179 (1997).Google Scholar
  90. 90.
    E. M. Levina, K. A. Gschneidner Jr., and V. K. Pecharsky, J. Magn. Magn. Mater. 231 (2001) 135.Google Scholar
  91. 91.
    O. Tegus, E. Bruck, L. Zhang, Dagula, K. H. J. Buschow, and F. R. de Boer, Physica B 319 (2002) 174.Google Scholar
  92. 92.
    H. Tang, A. O. Pecharsky, D. L. Schlagel, T. A. Lograsso, V. K. Pecharsky, and K. A. Gschneidner Jr., J. Appl. Phys. 93, 8298 (2003).Google Scholar
  93. 93.
    V. Provenzano, A. J. Shapiro, and R. D. Shull, Nature 429, 853 (2004).Google Scholar
  94. 94.
    L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P. A. Algarabel, M. R. Ibarra, and J. Kamarad, Phys. Rev. Lett. 93, 137201 (2004).Google Scholar
  95. 95.
    P. J. Webster, Contemp. Phys. 10, 559 (1969).Google Scholar
  96. 96.
    F. X. Hu, B. G. Shen, and J. R. Sun, Appl. Phys. Lett. 76, 3460 (2000).Google Scholar
  97. 97.
    F. X. Hu, B. G. Shen, J. R. Sun, and G. H. Wu, Phys. Rev. B 64, 132412 (2001).Google Scholar
  98. 98.
    F. X. Hu, J. R. Sun, G. H. Wu, and B. G. Shen, J. Appl. Phys. 90, 5216 (2001).Google Scholar
  99. 99.
    J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle, and A. Labarta, Phys. Rev. B 68, 094401 (2003).Google Scholar
  100. 100.
    F. Albertini, F. Canepa, S. Cirafici, E. A. Franceschi, M. Napoletano, A. Paoluzi, L. Pareti, and M. Solzi, J. Magn. Magn. Mater. 272–276, 2111 (2004).Google Scholar
  101. 101.
    X. Zhou, W. Li, H. P. Kunkel, and G. Williams, J. Phys.: Condens. Matter 16, L39 (2004).Google Scholar
  102. 102.
    S. Stadler, M. Khan, J. Mitchell, N. Ali, A. M. Gomes, I. Dubenko, A. Y. Takeuchi, and A. P. Guimarães, Appl. Phys. Lett. 88, 192511 (2006).Google Scholar
  103. 103.
    M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel, Phys. Rev. B 72, 094435 (2005).Google Scholar
  104. 104.
    T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nat. Mater. 4, 450 (2005).Google Scholar
  105. 105.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, Nature 439, 957 (2006).Google Scholar
  106. 106.
    Z. D. Han, D. H. Wang, C. L. Zhang, H. C. Xuan, B. X. Gu, and Y. W. Du, Appl. Phys. Lett. 90, 042507 (2007).Google Scholar
  107. 107.
    T. Krenke, E. Duman, M. Acet, and E. F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, and Bachir Ouladdiaf, Phys. Rev. B 75, 104414 (2007).Google Scholar
  108. 108.
    X. Moya, L. Mañosa, A. Planes, S. Aksoy, M. Acet, E. F. Wassermann, and T. Krenke, Phys. Rev. B 75, 184412 (2007).Google Scholar
  109. 109.
    C. Guillaud, J. Phys. Radium 12, 223 (1951).Google Scholar
  110. 110.
    H. Wada, T. Morikawaa, K. Taniguchia, T. Shibatab, Y. Yamadab, and Y. Akishige, Physica B 328, 114 (2003).Google Scholar
  111. 111.
    O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).Google Scholar
  112. 112.
    O. Tegus, E. Brück, L. Zhang, Dagula, K. H. J. Buschow, and F. R. de Boer, Physica B 319, 174 (2002).Google Scholar
  113. 113.
    M.-H. Phana and S.-C. Yub, J. Magn. Magn. Mater. 308, 325 (2007).Google Scholar
  114. 114.
    T. Tohei, H. Wada, and T. Kanomata, J. Appl. Phys. 94, 1800 (2003).Google Scholar
  115. 115.
    A. Fujita, S. Koiwai, S. Fujieda, K. Fukamichi, T. Kobayashi, H. Tsuji, S. Kaji, and A. T. Saito, Jpn. J. Appl. Phys. Pt. 2, 46, L154 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory for Magnetism, Institute of PhysicsChinese Academy of SciencesBeijingPeoples’ Republic of China

Personalised recommendations