Skip to main content

Magnetic Shape Memory Phenomena

  • Chapter
  • First Online:

Abstract

Giant magnetically induced strain up to 50 times larger compared to the strain of giant magnetostriction was observed in some Heusler alloys, particularly in Ni–Mn–Ga. In analogy with the shape memory phenomenon this effect was called magnetic shape memory effect. The effect includes two different phenomena: a magnetically induced structural phase transformation (usually a martensitic transformation) and a magnetically induced structural reorientation occurring in the martensitic phase. Transformation behavior, structure of the martensite, and phenomenology of the magnetically induced reorientation are described. The description is based mainly on the well-studied compound Ni–Mn–Ga.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Further Reading

  • Martensite, Eds. G. B. Olson and W. S. Owen, ASM International (1992). ISBN-13: 978-0871704344

    Google Scholar 

  • Shape Memory Materials, Eds. K Otsuka and C. M. Wayman, Cambridge University Press (1998).

    Google Scholar 

  • Bhattacharya K. Microstructure of Martensite, Oxford University Press Inc., New York (2003).

    MATH  Google Scholar 

  • O’Handley. R. C. Modern Magnetic Materials, John Wiley & Sons, Inc, New York (2000)

    Google Scholar 

  • Hubert, A. and Schäfer, S. Magnetic Domains, Springer, Berlin (1998)

    Google Scholar 

  • Cullity, B. D. Introduction to Magnetic Materials, Addison-Wesley, Reading, MA, London (1972)

    Google Scholar 

References

  1. K. Bhattacharya, R. D. James. Science 307, 53 (2005);. Carolyn Yeates, “Are Smart Materials Intelligent?” INSPEC Matters 77 (1994).

    Article  Google Scholar 

  2. Publications about MSM or MIR effect increases nearly exponentially, the quoted literature can be only small incomplete selection. There are specialized conferences as, e.g., ESOMAT and ICOMAT, which in part (particularly after year 2000) concentrate on MSM effect.

    Google Scholar 

  3. K. Ullakko, J. K. Huang, C. Kanter, V. V. Kokorin and R. C. O’Handley. Large magnetic-field-induced strains in Ni2MnGa single crystal. Appl. Phys. Lett. 69, 1966–1968 (1996).

    Article  Google Scholar 

  4. O. Heczko, A. Sozinov and K. Ullakko. Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Trans. Magn. 36, 3266–3268 (2000).

    Article  Google Scholar 

  5. A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko. Giant magnetic-field induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746–1748 (2002).

    Article  Google Scholar 

  6. N. Glavatska, G. Mogilniy, I. Glavatsky, S. Danilkin, D. Hohlwein, A. Beskrovnij, O. Söderberg and V. K. Lindroos. Temperature dependence of martensite structure and its effect on magnetic-field-induced strain in Ni2MnGa magnetic shape memory alloys. J. de Physique IV 112, 963–967 (2003).

    Article  Google Scholar 

  7. P. Mullner, V. A. Chernenko and G. Kostorz, A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity). J. Magn. Magn. Mater. 267, 325–334 (2003).

    Article  Google Scholar 

  8. O. Söderberg, A. Sozinov, Y. Ge, S.-P. Hannula and V. K. Lindroos. Giant magnetostrictive materials. In: Buschow J (ed.) Handbook of Magnetic Materials, Elsevier Science, Amsterdam, Vol. 16, pp. 1–39 (2006).

    Google Scholar 

  9. S. J. Murray, M. A. Marioni, A. M. Kukla, J. Robinson, R. C. O’Handley and S. M. Allen. Large field-induced strain in single crystalline Ni–Mn–Ga ferromagnetic shape memory alloy. J. Appl. Phys. 87, 5774–5776 (2000).

    Article  Google Scholar 

  10. I. Takeuchi, O. O. Famodu, J. C. Read, M. A. Aronova, K. S. Chang, C. Craciunescu, S. E. Lofland, M. Wuttig, F. C. Wellstood, L. Knauss and A. Orozco. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180–184 (2003).

    Article  Google Scholar 

  11. M. Wuttig, J. Li and C. Craciunescu. A new ferromagnetic shape memory alloy system. Scr. Mater. 44, 2393–2397 (2001).

    Article  Google Scholar 

  12. A. N. Lavrov, S. Komiya, Y. Ando. Antiferromagnets: Magnetic shape-memory effects in a crystal. Nature 418, 385(2002).

    Article  Google Scholar 

  13. S. Raasch, M. Doerr, A. Kreyssig, M. Loewenhaupt, M. Rotter, J. Hoffmann. Magnetic shape memory effect in the paramagnetic state in RCu2 (R = rare earth) antifferomagnets. Phys. Rev. B 73, 064402 (2006).

    Article  Google Scholar 

  14. K. Ullakko. Magnetically controlled shape memory alloys: A new class of actuator materials. J. Mater. Eng. Perform. 5, 405–409, (1996).

    Article  Google Scholar 

  15. A. N. Vasil’ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi and J. Tani. Structural and magnetic phase transitions in shape-memory alloys Ni2+xMn1-xGa. Phys. Rev. B 59, 1113 (1999).

    Article  Google Scholar 

  16. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, E. I. Estrin. Physics Uspekhi 46(6), 559–588 (2003).

    Article  Google Scholar 

  17. K. F. Hane and T. W. Shield. Symmetry and microstructure in martensites. Philos. Mag. A: Phys. Condens. Matter 78, 1215–1252 (1998).

    Google Scholar 

  18. L. Mañosa and A. Planes. Structural and magnetic phase transitions in Ni–Mn–Ga shape-memory alloys. Adv. Solid State Phys. 40, 361–374 (2000).

    Article  Google Scholar 

  19. M. S. Wechsler, D. S. Lieberman and T. A. Read. On the Theory of the formation of martensite. Trans. AIME 197, 1503–1515, (1953).

    Google Scholar 

  20. P. J. Brown, A. Y. Bargawi, J. Crangle, K.-U. Neumann and K. R. A. Ziebeck. Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa. J. Phys. – Cond. Mat. 11, 4715–4722 (1999).

    Article  Google Scholar 

  21. O. Heczko, A. Sozinov, N. Lanska, O. Söderberg and K. Ullakko. Temperature variation of structure and magnetic properties of Ni–Mn–Ga magnetic shape memory alloys. J. Magn. Magn. Mater. 242–245, 1446 (2002).

    Article  Google Scholar 

  22. O. Heczko, P. Svec, N. Lanska and K. Ullakko. Magnetic properties of Ni–Mn–Ga ribbon prepared by rapid solidification. IEEE Trans. Mag. 38, 2841 (2002).

    Article  Google Scholar 

  23. Sóshin Chikazumi. Physics of Ferromagnetism, 2nd edition, Clarendon Press, Oxford (1997) ISBN 0198517769.

    Google Scholar 

  24. E. Du T. De Lacherisserie. Magnetostriction: Theory and Applications of Magnetoelasticity, CRC Press (1993).

    Google Scholar 

  25. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006).

    Article  Google Scholar 

  26. Cherechukin, A. A. et al. Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni–Mn–Fe–Ga alloy. Phys. Lett. A 291, 175 (2001).

    Article  Google Scholar 

  27. J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Magnetostructural transformation in Ni–Mn–In–Co ribbons. Appl. Phys. Lett. 92, 162509 (2008).

    Article  Google Scholar 

  28. O. Heczko. Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291. 787–794 (2005).

    Article  Google Scholar 

  29. L. Straka and O. Heczko. Superelastic response of Ni–Mn–Ga martensite in magnetic fields and a simple model. IEEE Trans. Magn. 39, 3402 (2003).

    Article  Google Scholar 

  30. P. Müllner, V. A. Chernenko and G. Kostorz. Stress-induced twin rearrangement resulting in change of magnetization in a Ni–Mn–Ga ferromagnetic martensite. Scripta Mater 49, 129 (2003).

    Article  Google Scholar 

  31. X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect mediated reversible domain switching. Nat. Mater. 3, 91 (2004).

    Article  Google Scholar 

  32. A. L. Roytburd, T. S. Kim, Quanmin Su, J. Slutsker and M. Wuttig. Martensitic transformation in constrained films. Acta Mater. 46(14), 5095–5107 (1998).

    Article  Google Scholar 

  33. H. H. Liebermann and C. D. Graham Jr. Plastic and magnetoplastic deformation of Dy single crystals. Acta Mettalurgica 25, 715 (1977).

    Article  Google Scholar 

  34. P. Müllner, V. A. Chernenko and G. Kostorz. Large cyclic magnetic-field-induced deformation in orthorhombic (14 M) Ni–Mn–Ga martensite. J. Appl. Phys. 95, 1531 (2004).

    Article  Google Scholar 

  35. J. J. Rhyne, S. Foner, E. J. McNiff, Jr. and R. Doclo. Rare earth metal single crystals. I. High-field properties of Dy, Er, Ho, Tb, and Gd. J. Appl. Phys. 39, 892 (1968).

    Article  Google Scholar 

  36. R. D. James and M. Wuttig. Magnetostriction of martensite. Phi. Mag. A 77, 1273 (1998).

    Article  Google Scholar 

  37. T. Kakeshita, et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502–1504 (2000).

    Article  Google Scholar 

  38. J. Pons, et al. Ferromagnetic SMA’s: Alternatives to Ni-Mn-Ga. Mat. Sci. Eng. A 481, 57 (2008).

    Google Scholar 

  39. T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi and K. Kishio. Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J. Appl. Phys. 93, 8647–8649 (2003).

    Article  Google Scholar 

  40. Y. Sutou, et al. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358–4360 (2004).

    Article  Google Scholar 

  41. J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Martensitic transformation and magnetic properties in NiFeGaCo magnetic shape memory alloys. Acta Materialia 56, Nr. 13, S. 3177–3186 (2008).

    Article  Google Scholar 

  42. K. Oikawa, et al. Promising ferromagnetic Ni–Co-Al shape memory alloy system. Appl. Phys. Lett. 79, 3290–3292 (2001).

    Article  Google Scholar 

  43. K. Oikawa, et al. Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys. Appl. Phys. Lett. 81, 5201–5203 (2002).

    Article  Google Scholar 

  44. H. Morito, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida and K. Oikawa. Magnetic-field-induced strain of Fe–Ni–Ga in single-variant state. Appl. Phys. Lett. 83, 4993 (2003).

    Article  Google Scholar 

  45. H. Morito, A. Fujita, K. Oikawa, K. Ishida, K. Fukamichi and R. Kainuma. Stress-assisted magnetic-field-induced strain in Ni–Fe–Ga–Co ferromagnetic shape memory alloys. Appl. Phys. Lett. 90, 062505 (2007).

    Article  Google Scholar 

  46. J. G. Booth. Ch. 3, Heusler alloys in Ferromagnetic Materials Vol. 4, edited by E. P. Wohlfarth and K. H. J. Buschow. Elsevier, Amsterdam, (1988).

    Google Scholar 

  47. P. J. Webster. Heusler alloys. Contemporary Physics 10, 559–577 (1969).

    Article  Google Scholar 

  48. P. J. Webster, K. R. A. Ziebeck, S. L. Town and M. S. Peak. Magnetic order and phase transformation in Ni2MnGa alloy. Philos. Mag. B: Phys. Condens. Matter: Statistical Mechanics, Electronic, Optical and Magnetic Properties 49, 295–310 (1984).

    Google Scholar 

  49. V. V. Khovailo, T. Takagi, A. N. Vasilev, H. Miki, M. Matsumoto and R. Kainuma. On order-disorder (L21·B2’) phase transition in Ni2+xMn1-xGa Heusler alloys. Physica Status Solidi (a) 183, R1 (2001).

    Article  Google Scholar 

  50. P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K.-U. Neumann, B. Ouladdiaf and K. R. A. Ziebeck. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J. Phys.: Condens. Mat. 14, 10159 (2002).

    Article  Google Scholar 

  51. M. Richard, J. Feuchtwanger, D. Schlagel, T. Lograsso, S. M. Allen and R. C. O’Handley. Crystal structure and transformation behavior of Ni–Mn–Ga martensites. Scripta Materialia 54, 1797 (2006).

    Article  Google Scholar 

  52. M. Kreissl, K. U. Neumann, T. Stephens and K. R. A. Ziebeck. The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni2MnGa. J. Phys. 15, 3831 (2003).

    Google Scholar 

  53. U. Gaitzsch, M. Potschke, S. Roth, N. Mattern, B. Rellinghaus, L. Schultz. Structure formation in martensitic Ni50Mn30Ga20 MSM alloy. J. Alloys Comp. 443, 99 (2007).

    Article  Google Scholar 

  54. V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev and A. N. Vasiliev. Phase transitions in Ni2+xMn1-xGa with a high Ni excess. Phys. Rev. B 72, 224408 (2005).

    Article  Google Scholar 

  55. G. D. Liu, J. L. Chen, Z. H. Liu, X. F. Dai, G. H. Wu, B. Zhang and X. X. Zhang. Martensitic transformation and shape memory effect in a ferromagnetic shape memory alloy: Mn2NiGa. Appl. Phys. Lett. 87, 262504 (2005).

    Article  Google Scholar 

  56. Chernenko V. A., Segui C., Cesari E., Pons J. and Kokorin V. V. Sequence of martensitic transformations in Ni–Mn–Ga alloys. Phys. Rev. B 57, 2659–2662 (1998).

    Article  Google Scholar 

  57. V. A. Chernenko, E. Cesari, V. V. Khovailo, J. Pons, C. Segui and T. Tagaki. Intermartensitic phase transformations in Ni–Mn–Ga studied under magnetic field. J. Magn. Magn. Mater. 290, 871 (2005).

    Article  Google Scholar 

  58. N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko and V. K. Lindroos. Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 95, 8074 (2004).

    Article  Google Scholar 

  59. X. Jin, M. Marioni, D. Bono, S. M. Allen, R. C. O’Handley and T. Y. Hsu. Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration. J. Appl. Phys. 91, 8222 (2002).

    Article  Google Scholar 

  60. P. Entel, V. D. Buchelnikov, V. V. Khovailo, et al. Modelling the phase diagram of magnetic shape memory Heusler alloys. J. Phys. D-Appl. Phys. 39(5), 865 (2006).

    Article  Google Scholar 

  61. L. Manosa, A. G. Comas, E. Obrad´o and A. Planes. Premartensitic phase transformation in the Ni2MnGa shape memory alloy. Mat. Sci. Eng. A 273–276, 329–332 (1999).

    Article  Google Scholar 

  62. L. Manosa, A. Gonzalez-Comas, E. Obradó, A. Planes, V. A. Chernenko, V. V. Kokorin and E. Cesari. Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy. Phys. Rev. B, 55(17), 11068, (1997).

    Article  Google Scholar 

  63. L. Manosa, A. Planes, J. Zarestky, T. A. Lograsso, D. L. Schlagel and C. Stassis. Phonon softening in Ni–Mn–Ga alloys. Phys. Rev. B, 64, 024305 (2001).

    Article  Google Scholar 

  64. V. V. Martynov and V. V. Kokorin. The crystal structure of thermally- and stress-induced Martensites in Ni2MnGa single crystals. J. Phys. III France 2, 739 (1992).

    Article  Google Scholar 

  65. V. A. Chernenko, V. L’Vov, J. Pons and E. Césari. Superelasticity in high-temperature Ni–Mn–Ga alloys. J. Appl. Phys. 93, 2394–2399 (2003).

    Article  Google Scholar 

  66. O. Söderberg, K. Koho, T. Sammi, X. W. Liu, A. Sozinov, N. Lanska and V. K. Lindroos. Effect of the selected alloying on Ni–Mn–Ga alloys. Mat. Sci. Eng. A 378/1–2, 386–393 (2004).

    Google Scholar 

  67. G. H. Wu, W. H. Wang, J. L. Chen, L. Ao, Z. H. Liu, W. S. Zhan, T. Liang and H. B. Xu. Magnetic properties and shape memory of Fe-doped Ni52Mn24Ga24 single crystals. Appl. Phys. Lett. 80, 634 (2002).

    Article  Google Scholar 

  68. Y. Ge, O. Söderberg, N. Lanska, A. Sozinov, K. Ullakko and V. K. Lindroos. Crystal structure of three NiMnGa alloys in powder and bulk materials. J. de Physique IV 112, 921 (2003).

    Article  Google Scholar 

  69. J. Pons, V. A. Chernenko, R. Santamarta and E. Césari. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Materialia 48, 3027–3038 (2000).

    Article  Google Scholar 

  70. B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo and K. Itagaki. Low temperature crystal structure of Ni–Mn–Ga alloys. J. Alloys Comp. 290, 137–143 (1999).

    Article  Google Scholar 

  71. A. T. Zayak, P. Entel, J. Enkovaara, A. Ayuela and R. M. Nieminen. First principles investigations of homogeneous lattice-distortive strain and shuffles in Ni2MnGa. J. Phys.: Condens. Mat. 15, 159–164 (2003).

    Article  Google Scholar 

  72. K. Zasimchuk, V. V. Kokorin, V. V. Martynov, A. V. Tkachenko and V. A. Chernenko. Crystal structure of martensite in Heusler alloy Ni2MnGa. Phys. Met. Metall. 69, 104 (1990)

    Google Scholar 

  73. J. Pons, R. Santamarta, V. A. Chernenko and E. Césari. HREM study of different martensitic phases in Ni–Mn–Ga alloys. Mater. Chem. Phys. 81, 457 (2003).

    Google Scholar 

  74. J. Pons, R. Santamarta, E. Césari and V. A. Chernenko. Martensitic structures in Ni–Mn–Ga. Appl. Cryst. 18, 186–199 (2001).

    Google Scholar 

  75. A. Zheludev, S. M. Shapiro P. Wochner and L. E. Tanner. Precursor effects and premartensitic transformation in Ni2MnGa. Phys. Rev. B 54, 15045–15050 (1996).

    Article  Google Scholar 

  76. A. Ayuela, J. Enkovaara and R. M. Nieminen. Ab initio study of tetragonal variants in Ni2MnGa alloy. J. Phys. – Cond. Matt. 14, 5325 (2002).

    Article  Google Scholar 

  77. J. Enkovaara, A. Ayuela, A. T. Zayak, P. Entel, L. Nordstrom, M. Dube, J. Jalkanen, J. Impola and R. M. Nieminen. Magnetically driven shape memory alloys. Mater. Sci. Eng. A 378, 52 (2004).

    Article  Google Scholar 

  78. M. Thomas, O. Heczko, J. Buschbeck, U. K. Rößler, J. McCord, N. Scheerbaum, L. Schultz and S. Fähler. Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO (100). New J. Phys. 10, 023040 (2008).

    Article  Google Scholar 

  79. L. Straka, O. Heczko, V. Novak and N. Lanska. Study of austenite-martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. de Physique IV – Proceedings 112, 911 (2003).

    Article  Google Scholar 

  80. T. Kanomata, K. Shirakawa and T. Kaneko. Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys nickel-manganese-Z (Ni2MnZ) (Z = aluminum, gallium, indium, tin and antimony). J. Magn. Magn. Mater. 65, 76–82 (1987).

    Article  Google Scholar 

  81. J. Enkovaara, O. Heczko, A. Ayuela and R. M. Nieminen. Coexistence of ferromagnetic and antiferromagnetic order in Mn–doped Ni2MnGa. Phys. Rev. B 67, 212405 (2003).

    Article  Google Scholar 

  82. O. Heczko, L. Straka and K. Ullakko. Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. de Physique IV, 112, 959 (2003).

    Article  Google Scholar 

  83. R. Tickle and R. D. James. Magnetic and magnetomechanical properties of Ni2MnGa. J. Magn. Magn. Mat. 195, 627 (1999).

    Article  Google Scholar 

  84. L. Straka and O. Heczko. Magnetic anisotropy in Ni–Mn–Ga martensites. J. Appl. Phys. 92, 8636 (2003).

    Article  Google Scholar 

  85. L. Straka, O. Heczko and N. Lanska. Magnetic properties of various martensitic phases in Ni–Mn–Ga alloy. IEEE Trans. Magn. 38, 2835–2837 (2002).

    Article  Google Scholar 

  86. F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra and Righi L. Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2+xMn1+yGa1+z (x+y+z=0) Heusler alloys. Appl. Phys. Lett. 81, 4032 (2002).

    Article  Google Scholar 

  87. J. Enkovaara, A. Ayuela, L. Nordstrom and R. M. Nieminen. Structural, thermal, and magnetic properties of Ni2MnGa. J. Appl. Phys. 91, 7798 (2002).

    Article  Google Scholar 

  88. A. Sozinov, A. A. Likhachev and K. Ullakko. Magnetic and magnetomechanical properties of Ni–Mn–Ga alloys with easy axis and easy plane of magnetization. In: C.S. Lynch (Ed.) Proceedings of SPIE, 4333, 189–196 (2001).

    Google Scholar 

  89. O. Heczko and L. Straka. Compositional dependence of structure, magnetization and magnetic anisotropy in Ni–Mn–Ga magnetic shape memory alloys, J. Magn. Magn. Mat. 272–276, 2045 (2004).

    Article  Google Scholar 

  90. O. Heczko and L. Straka. Determination of ordinary magnetostriction in Ni–Mn–Ga magnetic shape memory alloy, J. Magn. Magn. Mat. 290–291, 846 (2005).

    Article  Google Scholar 

  91. O. Heczko, L. Straka, I. Aaltio and S.-P. Hannula. Strain and concurrent magnetization changes in magnetic shape memory Ni–Mn–Ga single crystals – experiment and model. Mat. Sci. Eng. A 481–482, 283 (2008).

    Article  Google Scholar 

  92. O. Heczko, L. Straka and S.-P. Hannula. Stress dependence of magnetic shape memory effect and its model. Mat. Sci. Eng. A 438–440, 1003–1006 (2006).

    Article  Google Scholar 

  93. O. Heczko, K. Jurek and K. Ullakko. Magnetic properties and magnetic domain structure of magnetic shape memory Ni–Mn–Ga alloy. J. Magn. Magn. Mat. 226–230, 996–998 (2001).

    Article  Google Scholar 

  94. Y. Ge, O. Heczko, O. Söderberg and V. K. Lindroos. Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159 (2004).

    Article  Google Scholar 

  95. Y. Ge, O. Heczko, O. Söderberg and S.-P. Hannula. Direct optical observation of magnetic domains in Ni–Mn–Ga martensite. Appl. Phys. Lett. 89, 082502 (2006).

    Article  Google Scholar 

  96. Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz and J. McCord. Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys. Appl. Phys. Lett. 90, 192504 (2007)

    Article  Google Scholar 

  97. H. D. Chopra, C. Ji and V. V. Kokorin. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Phys. Rev. B 61, R14913 (2000).

    Article  Google Scholar 

  98. D. I. Paul, W. McGehee, R. C. O’Handley and M. Richard. Ferromagnetic shape memory alloys: A theoretical approach. J. Appl. Phys. 101, 123917 (2007).

    Article  Google Scholar 

  99. V. Soolshenko, N. Lanska and K. Ullakko. Structure and twinning stress of martensites in non-stoichiometric Ni2MnGa single crystal. J. de Physique IV France 112, 947 (2003).

    Article  Google Scholar 

  100. L. Dai, J. Cullen and M. Wuttig. Intermartensitic transformation in a NiMnGa alloy. J. Appl. Phys. 95, 6957–6959 (2004).

    Google Scholar 

  101. I. Aaltio, O. Heczko, O. Söderberg and S.-P- Hannula, ch. 20. Shape Memory alloys and Effects: Types, Functions, Modeling and Applications (Magnetically Controlled Shape Memory Alloys). In M. Schwartz (Ed.), Smart Materials, CRC Press, Taylor and Francis Group, LLC (2009).

    Google Scholar 

  102. M. Stipcich, L. Manosa, A. Planes, M. Morin, J. Zarestky, T. A. Lograsso and C. Stassis. Elastic constants of Ni–Mn–Ga magnetic shape memory alloys. Phys. Rev B, 70, 054115 (2004).

    Article  Google Scholar 

  103. L. Straka, V. Novak, M. Landa and O. Heczko. Acoustic emission of Ni–Mn–Ga magnetic shape memory alloy in different straining modes. Mat. Sci. Eng. A 374, 263–269 (2004).

    Article  Google Scholar 

  104. P. Molnar, P. Sittner, P. Lukas, S-P. Hannula and O. Heczko. Stress-induced martensite variant reorientation in magnetic shape memory Ni–Mn–Ga single crystal studied by neutron diffraction. Smart Mater. Struct. 17, 035014 (5 pp) (2008).

    Article  Google Scholar 

  105. P. Molnar, P. Sittner, V. Novak and O. Heczko. Magnetic field induced reorientation and mechanical training process in NiMnGa single crystal, Proc. ICOMAT 2008, Santa Fe, to be published in TMR.

    Google Scholar 

  106. O. Heczko, A. Soroka and S.-P. Hannula. Magnetic shape memory effect in thin foils. Appl. Phys. Lett. 93, 022503, (2008).

    Google Scholar 

  107. P. Molnar, P. Sittner, V. Novak, J. Prokleska, V. Sechovsky, B. Ouladdiaf, S. P. Hanulla and O. Heczko. In situ neutron diffraction study of magnetic field induced martensite reorientation in Ni–Mn–Ga under constant stress. J. Phys.: Condens. Mat. 20, 104224 (2008).

    Article  Google Scholar 

  108. O. Heczko, K. Prokes and S-P. Hannula. Neutron diffraction studies of magnetic shape memory Ni–Mn–Ga single crystal. J. Magn. Magn. Mater. 316, 386 (2007).

    Article  Google Scholar 

  109. M. L. Richard. Systematic analysis of the crystal structure, chemical ordering and microstructure of Ni–Mn–Ga ferromagnetic shape memory alloys. Ph.D. thesis, MIT (2005).

    Google Scholar 

  110. L. Dai, M. Wuttig and E. Pagounis. Twin stabilization in a ferromagnetic shape memory alloy. Scripta Materialia 55, 807–810 (2006).

    Article  Google Scholar 

  111. L. Straka, O. Heczko, H. Hänninen. Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment. Acta Materialia 56, 5492–5499 (2008).

    Google Scholar 

  112. D. I. Paul, J. Marquiss and D. Quattrochi. Theory of magnetization: Twin boundary interaction in ferromagnetic shape memory alloys. J. Appl. Phys. 93, 4561 (2003).

    Article  Google Scholar 

  113. R. C. O’Handley, D. I. Paul, M. Marioni, C. P. Henry, M. Richard, P. G. Tello and S. M. Allen. Micromagnetic and micromechanics of Ni–Mn–Ga actuation. J. Phys. IV France, 112, 973 (2003).

    Article  Google Scholar 

  114. E. V. Gomonaj and V. A. Lvov. Martensitic phase transition with two-component order parameter in a stressed cubic crystal. Phase Transitions 41, 9 (1994).

    Article  Google Scholar 

  115. A. A. Likhachev and K. Ullakko. Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A 275, 142 (2000).

    Article  Google Scholar 

  116. A. A. Likhachev, A. Sozinov and K. Ullakko. Different modeling concepts of magnetic shape memory and their comparison with some experimental results obtained in Ni–Mn–Ga. Mater. Sci. Eng. A 378, 513–518 (2004),.

    Article  Google Scholar 

  117. R. C. O’Handley. Model for strain and magnetization in magnetic shape memory alloys. J. Appl. Phys. 83, 3263–3270 (1998).

    Article  Google Scholar 

  118. B. Kiefer and D. C. Lagoudas. Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys, Philos. Mag. 85, 4289 (2005).

    Article  Google Scholar 

  119. N. Okamoto, T. Fukuda and T. Kakeshita. Magnetocrystalline anisotropy constant and twinning stress in martensite phase of Ni–Mn–Ga. Mat. Sci. Eng. A 438, 948 (2006).

    Article  Google Scholar 

  120. J. Kiang and L. Tong. Modelling of magneto-mechanical behaviour of Ni–Mn–Ga single crystals. J. Magn. Magn. Mater. 292, 394 (2005).

    Article  Google Scholar 

  121. R. C. O’Handley, S. J. Murray, M. Marioni, H. Nembach and S. M. Allen. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials, J. Appl. Phys. 87, 4712 (2000).

    Article  Google Scholar 

  122. R. C. O’Handley and S. M. Allen. Ferromagnetic shape memory materials. Encyclopedia of Smart Materials, John Wiley and Sons, New York 936–951 (2001). And R. C. O’Handley, D. I. Paul, S. M. Allen, M. Richard, J. Feuchtwanger, B. Peterson, R. Techapiesancharoenkij, M. Barandiaran, P. Lazpita. Model for temperature dependence of field-induced strain in ferromagnetic shape memory alloys, Mat. Sci. Eng. A 438–440, 445–449 (2006).

    Google Scholar 

  123. A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Koho, K. Ullakko and V. K. Lindroos. Stress-induced variant rearrangement in Ni–Mn–Ga single crystals with nonlayered tetragonal martensitic structure. J. Physique IV, 115, 127 (2004).

    Article  Google Scholar 

  124. A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Ullakko and V. K. Lindroos. Stress- and magnetic-field-induced variant rearrangement in Ni–Mn–Ga single crystals with seven-layered martensitic structure. Mat. Sci. Eng. A 378, 401 (2006).

    Google Scholar 

  125. L. Straka and O. Heczko. Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic field. J. Magn. Magn, Mat. 290–291, 829 (2005).

    Article  Google Scholar 

  126. L. Straka. Magnetic and magneto-mechanical properties of Ni–Mn–Ga magnetic shape memory alloys. PhD thesis, TKK Helsinki (2007).

    Google Scholar 

  127. L. Straka and O. Heczko. Magnetization changes in Ni–Mn–Ga magnetic shape memory single crystal during compressive stress reorientation. Scripta Materialia 54, 1549–1552 (2006).

    Article  Google Scholar 

  128. V. A. Chernenko, V. A. L’vov, P. Mullner and G. Kostorz, T. Takagi. Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: Experiment and modeling. Phys. Rev. B 69, 134410 (2004).

    Article  Google Scholar 

  129. T. Kakeshita, T. Fukuda and T. Takeuchi. Magneto-mechanical evaluation for twinning plane movement driven by magnetic field in ferromagnetic shape memory alloys. Mat. Sci. Eng. A 438–440, 12 (2006).

    Article  Google Scholar 

  130. R. C. O’Handley, D. I. Paul, S. M. Allen, M. Richard, J. Feuchtwanger, B. Peterson, R. Techapiesancharoenkij, M. Barandiaran and P. Lazpita. Model for temperature dependence of field-induced strain in ferromagnetic shape memory alloys. Mat. Sci. Eng. A 438–440, 445–449 (2006).

    Article  Google Scholar 

  131. O. Heczko and K. Ullakko. Effect of temperature on magnetic properties of Ni–Mn–Ga Magnetic Shape Memory (MSM) alloys. IEEE Trans. Magn. 37, 2672 (2001).

    Article  Google Scholar 

  132. L. Straka, O. Heczko and S.-P. Hannula. Temperature dependence of reversible field-induced strain in Ni–Mn–Ga single crystal. Scripta Mat. 54, 1497 (2006).

    Article  Google Scholar 

  133. N. Glavatska, G. Mogylny and S. Danilkin. Temperature dependence of lattice parameters in martensite and effect of the external magnetic field on martensite structure in Ni2MnGa studied in-situ with neutron diffraction. Mater. Sci. Forum 443–444, 397–400 (2004).

    Article  Google Scholar 

  134. O. Heczko and L. Straka. Temperature dependence and temperature limits of magnetic shape memory effect. J. Appl. Phys. 94(12), 7139–7143 (2003).

    Article  Google Scholar 

  135. O. Soderberg, L. Straka, O. Heczko, V. Novak and V. K. Lindroos. Tensile/compressive behavior of non-layered tetragonal NiMnGa alloy. Mat. Sci. Eng. A 386, 27 (2004).

    Google Scholar 

  136. K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, V. K. Lindroos. Magnetic-field-induced strains in polycrystalline Ni–Mn–Ga at room temperature. Scripta Mat. 44, 475 (2001).

    Article  Google Scholar 

  137. U. Gaitzsch, M. Potschke, S. Roth, B. Rellinghaus, L. Schultz. A 1% magnetostrain in polycrystalline 5 M Ni-Mn-Ga. Acta Materialia 57, 365–370 (2009).

    Google Scholar 

  138. J. Pons, C. Seguí, V. A. Chernenko, E. Cesari, P. Ochin and R. Portier. Transformation and ageing behaviour of melt-spun Ni–Mn–Ga shape memory alloys. Mat. Sci. Eng. A, 273–275, 315 (1999).

    Article  Google Scholar 

  139. O. Heczko, M. Thomas, R. Niemann, L. Schultz and S. Fähler. Magnetically induced martensite transition in freestanding epitaxial Ni-Mn-Ga films, Appl. Phys. Lett. 94, 152513 (2009).

    Article  Google Scholar 

  140. J. Feuchtwanger, N. Vidal, J. M. Barandiaran, J. Gutierrez, T. Hansen, M. Peel, C. Mondelli, R. C. O’Handley and S. M. Allen. Rearrangement of twin variants in ferromagnetic shape memory alloy-polyurethane composites studied by stroboscopic neutron diffraction. J. Phys. Condens. Matt. 20, 4247 (2008). A. Berkowitz, UCSD, personal communication, 2005.

    Article  Google Scholar 

  141. J. Feuchtwanger, M. L. Richard, Y. J. Tang, A. E. Berkowitz, R. C. O’Handley and S. M. Allen. Large energy absorption in Ni–Mn–Ga/polymer composites. J. Appl. Phys. 97, 10M319 (2005).

    Article  Google Scholar 

  142. N. Scheerbaum, D. Hinz, O. Gutfleisch, K.-H. Muller and L. Schultz. Textured polymer bonded composites with Ni–Mn–Ga magnetic shape memory particles. Acta Mat. 55, 2707 (2007).

    Article  Google Scholar 

  143. N. Scheerbaum, O. Heczko, J. Liu, D. Hinz, L. Schultz and O. Gutfleisch. Magnetic field-induced twin boundary motion in polycrystalline Ni–Mn–Ga fibres. New J. Phys. 10, 073002 (2008).

    Article  Google Scholar 

  144. N. Scheerbaum, D. Hinz, O. Gutfleisch, W. Skrotzki and L. Schultz. Compression-induced texture change in NiMnGa–polymer composites observed by synchrotron radiation. J. Appl. Phys., 101 09C501 (2007).

    Article  Google Scholar 

  145. F. J. Castaño, B. Nelson-Cheeseman, R. C. O’Handley, C. A. Ross, C. Redondo and F. Castaño. Structure and thermomagnetic properties of polycrystalline Ni–Mn–Ga thin films. J. Appl. Phys., 93(10), 8492(2003).

    Article  Google Scholar 

  146. V. A. Chernenko, M. Hagler, P. Müllner, V. M. Kniazkyi, V. A. L’vov, M. Ohtsuka and S. Besseghini. Magnetic susceptibility of martensitic Ni–Mn–Ga film. J. Appl. Phys. 101, 053909 (2007).

    Article  Google Scholar 

  147. J. W. Dong, et al. Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs. Appl. Phys. Lett. 75, 1443 (1999).

    Article  Google Scholar 

  148. G. Jakob and H. J. Elmers. Epitaxial films of the magnetic shape memory material Ni2MnGa. J. Magn. Magn. Mater. 310, 2779 (2007).

    Article  Google Scholar 

  149. O. Heczko, M. Thomas, J. Buschbeck, L. Schultz and S. Fähler. Epitaxial Ni–Mn–Ga films deposited on SrTiO3 and evidence of magnetically induced reorientation of martensitic variants at room temperature. Appl. Phys. Lett. 92, 1 (2008).

    Article  Google Scholar 

  150. M. Thomas, O. Heczko, J. Buschbeck, Y.W. Lai, J. McCord, L. Schultz and S. Fähler. Stray field induced actuation mode of freestanding magnetic shape memory films, Adv. Mat. (2009), DOI: 10.1002/adma.200900469.

    Google Scholar 

  151. Y. Boonyongmaneerat, M. Chmielus, D. C. Dunand and P. Mullner. Increasing magnetoplasticity in polycrystalline Ni–Mn–Ga by reducing internal constraints through porosity. Phys. Rev. Lett. 99, 247201 (2007).

    Article  Google Scholar 

  152. I. Aaltio, M. Lahelin, O. Soderberg, O. Heczko, B. Lofgren, Y. Ge, J. Seppala and S.-P. Hannula. Temperature dependence of the damping properties of Ni–Mn–Ga alloys. Mat. Sci. Eng. A 481–482, 314–317 (2008).

    Article  Google Scholar 

  153. I. Aaltio, K. P. Mohanchandra, O. Heczko, M. Lahelin, Y. Ge, G.P. Carman, O. Soderberg, B. Lofgren J. Seppala and S.-P. Hannula. Temperature dependence of mechanical damping in Ni–Mn–Ga austenite and non-modulated martensite. Scripta Mat. 59, 550 (2008).

    Article  Google Scholar 

  154. I. Suorsa, J. Tellinen, K. Ullakko and E. Pagounis. Voltage generation induced by mechanical straining in magnetic shape memory materials. J. Appl. Phys. 95, 8054 (2004).

    Article  Google Scholar 

  155. I. Karaman, B. Basaran, H. E. Karaca, A. I. Karsilayan and Y. Chumlyakov. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 90, 172505 (2007).

    Article  Google Scholar 

  156. V. V. Kokorin, V. A. Chernenko, V. I. Val’kov, S. M. Konoplyuk and E. A. Khapalyuk. Magnetic transformation in Ni2MnGa compounds. Phys. Solid State 37, 2049–2051 (1995).

    Google Scholar 

  157. M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel. Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys. Rev B, 72, 094435 (2005).

    Article  Google Scholar 

  158. J. Marcos, A. Planes, L. Manosa, F. Casanova, X. Batlle, A. Labarta and B. Martinez. Magnetic field induced entropy change and magnetoelasticity in Ni–Mn–Ga alloys. Phys. Rev B, 66, 224413 (2002).

    Article  Google Scholar 

  159. O. Soderberg, I. Aaltio, Y. Ge, O. Heczko and S.-P. Hannula. Ni–Mn–Ga multifunctional compounds. Mat. Sci. Eng. A 481–482, 80–85 (2008).

    Article  Google Scholar 

  160. N. Glavatska. Origin of the time-dependent magnetoplasticity in the Ni–Mn–Ga magnetic shape memory martensites. Mat. Sci. Eng. A 481–482, 73–79F (2008).

    Article  Google Scholar 

  161. F. Xiong, Y. Liu and E. Pagounis. Thermally induced fracture of single crystal Ni–Mn–Ga ferromagnetic shape memory alloy. J. Alloys Comp. 415, 188 (2006).

    Article  Google Scholar 

  162. J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, K. Ullakko and H. Borgmann (Ed.). Proc. ACTUATOR 2002, Bremen, Germany (2002), pp. 566–569.

    Google Scholar 

  163. O. Heczko, L. Straka, O. Söderberg and S.-P. Hannula. Magnetic shape memory fatigue, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, edited by William D. Armstrong, Proceedings of SPIE Vol. 5761 (2005) p. 513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Heczko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heczko, O., Scheerbaum, N., Gutfleisch, O. (2009). Magnetic Shape Memory Phenomena. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics