Advertisement

Magnetic Shape Memory Phenomena

  • Oleg Heczko
  • Nils Scheerbaum
  • Oliver Gutfleisch
Chapter

Abstract

Giant magnetically induced strain up to 50 times larger compared to the strain of giant magnetostriction was observed in some Heusler alloys, particularly in Ni–Mn–Ga. In analogy with the shape memory phenomenon this effect was called magnetic shape memory effect. The effect includes two different phenomena: a magnetically induced structural phase transformation (usually a martensitic transformation) and a magnetically induced structural reorientation occurring in the martensitic phase. Transformation behavior, structure of the martensite, and phenomenology of the magnetically induced reorientation are described. The description is based mainly on the well-studied compound Ni–Mn–Ga.

Keywords

Martensitic Transformation Twin Boundary Magnetization Curve Easy Axis Heusler Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Martensite, Eds. G. B. Olson and W. S. Owen, ASM International (1992). ISBN-13: 978-0871704344Google Scholar
  2. Shape Memory Materials, Eds. K Otsuka and C. M. Wayman, Cambridge University Press (1998).Google Scholar
  3. Bhattacharya K. Microstructure of Martensite, Oxford University Press Inc., New York (2003).MATHGoogle Scholar
  4. O’Handley. R. C. Modern Magnetic Materials, John Wiley & Sons, Inc, New York (2000)Google Scholar
  5. Hubert, A. and Schäfer, S. Magnetic Domains, Springer, Berlin (1998)Google Scholar
  6. Cullity, B. D. Introduction to Magnetic Materials, Addison-Wesley, Reading, MA, London (1972)Google Scholar

References

  1. 1.
    K. Bhattacharya, R. D. James. Science 307, 53 (2005);. Carolyn Yeates, “Are Smart Materials Intelligent?” INSPEC Matters 77 (1994).CrossRefGoogle Scholar
  2. 2.
    Publications about MSM or MIR effect increases nearly exponentially, the quoted literature can be only small incomplete selection. There are specialized conferences as, e.g., ESOMAT and ICOMAT, which in part (particularly after year 2000) concentrate on MSM effect.Google Scholar
  3. 3.
    K. Ullakko, J. K. Huang, C. Kanter, V. V. Kokorin and R. C. O’Handley. Large magnetic-field-induced strains in Ni2MnGa single crystal. Appl. Phys. Lett. 69, 1966–1968 (1996).CrossRefGoogle Scholar
  4. 4.
    O. Heczko, A. Sozinov and K. Ullakko. Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Trans. Magn. 36, 3266–3268 (2000).CrossRefGoogle Scholar
  5. 5.
    A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko. Giant magnetic-field induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746–1748 (2002).CrossRefGoogle Scholar
  6. 6.
    N. Glavatska, G. Mogilniy, I. Glavatsky, S. Danilkin, D. Hohlwein, A. Beskrovnij, O. Söderberg and V. K. Lindroos. Temperature dependence of martensite structure and its effect on magnetic-field-induced strain in Ni2MnGa magnetic shape memory alloys. J. de Physique IV 112, 963–967 (2003).CrossRefGoogle Scholar
  7. 7.
    P. Mullner, V. A. Chernenko and G. Kostorz, A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity). J. Magn. Magn. Mater. 267, 325–334 (2003).CrossRefGoogle Scholar
  8. 8.
    O. Söderberg, A. Sozinov, Y. Ge, S.-P. Hannula and V. K. Lindroos. Giant magnetostrictive materials. In: Buschow J (ed.) Handbook of Magnetic Materials, Elsevier Science, Amsterdam, Vol. 16, pp. 1–39 (2006).Google Scholar
  9. 9.
    S. J. Murray, M. A. Marioni, A. M. Kukla, J. Robinson, R. C. O’Handley and S. M. Allen. Large field-induced strain in single crystalline Ni–Mn–Ga ferromagnetic shape memory alloy. J. Appl. Phys. 87, 5774–5776 (2000).CrossRefGoogle Scholar
  10. 10.
    I. Takeuchi, O. O. Famodu, J. C. Read, M. A. Aronova, K. S. Chang, C. Craciunescu, S. E. Lofland, M. Wuttig, F. C. Wellstood, L. Knauss and A. Orozco. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180–184 (2003).CrossRefGoogle Scholar
  11. 11.
    M. Wuttig, J. Li and C. Craciunescu. A new ferromagnetic shape memory alloy system. Scr. Mater. 44, 2393–2397 (2001).CrossRefGoogle Scholar
  12. 12.
    A. N. Lavrov, S. Komiya, Y. Ando. Antiferromagnets: Magnetic shape-memory effects in a crystal. Nature 418, 385(2002).CrossRefGoogle Scholar
  13. 13.
    S. Raasch, M. Doerr, A. Kreyssig, M. Loewenhaupt, M. Rotter, J. Hoffmann. Magnetic shape memory effect in the paramagnetic state in RCu2 (R = rare earth) antifferomagnets. Phys. Rev. B 73, 064402 (2006).CrossRefGoogle Scholar
  14. 14.
    K. Ullakko. Magnetically controlled shape memory alloys: A new class of actuator materials. J. Mater. Eng. Perform. 5, 405–409, (1996).CrossRefGoogle Scholar
  15. 15.
    A. N. Vasil’ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi and J. Tani. Structural and magnetic phase transitions in shape-memory alloys Ni2+xMn1-xGa. Phys. Rev. B 59, 1113 (1999).CrossRefGoogle Scholar
  16. 16.
    A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, E. I. Estrin. Physics Uspekhi 46(6), 559–588 (2003).CrossRefGoogle Scholar
  17. 17.
    K. F. Hane and T. W. Shield. Symmetry and microstructure in martensites. Philos. Mag. A: Phys. Condens. Matter 78, 1215–1252 (1998).Google Scholar
  18. 18.
    L. Mañosa and A. Planes. Structural and magnetic phase transitions in Ni–Mn–Ga shape-memory alloys. Adv. Solid State Phys. 40, 361–374 (2000).CrossRefGoogle Scholar
  19. 19.
    M. S. Wechsler, D. S. Lieberman and T. A. Read. On the Theory of the formation of martensite. Trans. AIME 197, 1503–1515, (1953).Google Scholar
  20. 20.
    P. J. Brown, A. Y. Bargawi, J. Crangle, K.-U. Neumann and K. R. A. Ziebeck. Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa. J. Phys. – Cond. Mat. 11, 4715–4722 (1999).CrossRefGoogle Scholar
  21. 21.
    O. Heczko, A. Sozinov, N. Lanska, O. Söderberg and K. Ullakko. Temperature variation of structure and magnetic properties of Ni–Mn–Ga magnetic shape memory alloys. J. Magn. Magn. Mater. 242–245, 1446 (2002).CrossRefGoogle Scholar
  22. 22.
    O. Heczko, P. Svec, N. Lanska and K. Ullakko. Magnetic properties of Ni–Mn–Ga ribbon prepared by rapid solidification. IEEE Trans. Mag. 38, 2841 (2002).CrossRefGoogle Scholar
  23. 23.
    Sóshin Chikazumi. Physics of Ferromagnetism, 2nd edition, Clarendon Press, Oxford (1997) ISBN 0198517769.Google Scholar
  24. 24.
    E. Du T. De Lacherisserie. Magnetostriction: Theory and Applications of Magnetoelasticity, CRC Press (1993).Google Scholar
  25. 25.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006).CrossRefGoogle Scholar
  26. 26.
    Cherechukin, A. A. et al. Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni–Mn–Fe–Ga alloy. Phys. Lett. A 291, 175 (2001).CrossRefGoogle Scholar
  27. 27.
    J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Magnetostructural transformation in Ni–Mn–In–Co ribbons. Appl. Phys. Lett. 92, 162509 (2008).CrossRefGoogle Scholar
  28. 28.
    O. Heczko. Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291. 787–794 (2005).CrossRefGoogle Scholar
  29. 29.
    L. Straka and O. Heczko. Superelastic response of Ni–Mn–Ga martensite in magnetic fields and a simple model. IEEE Trans. Magn. 39, 3402 (2003).CrossRefGoogle Scholar
  30. 30.
    P. Müllner, V. A. Chernenko and G. Kostorz. Stress-induced twin rearrangement resulting in change of magnetization in a Ni–Mn–Ga ferromagnetic martensite. Scripta Mater 49, 129 (2003).CrossRefGoogle Scholar
  31. 31.
    X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect mediated reversible domain switching. Nat. Mater. 3, 91 (2004).CrossRefGoogle Scholar
  32. 32.
    A. L. Roytburd, T. S. Kim, Quanmin Su, J. Slutsker and M. Wuttig. Martensitic transformation in constrained films. Acta Mater. 46(14), 5095–5107 (1998).CrossRefGoogle Scholar
  33. 33.
    H. H. Liebermann and C. D. Graham Jr. Plastic and magnetoplastic deformation of Dy single crystals. Acta Mettalurgica 25, 715 (1977).CrossRefGoogle Scholar
  34. 34.
    P. Müllner, V. A. Chernenko and G. Kostorz. Large cyclic magnetic-field-induced deformation in orthorhombic (14 M) Ni–Mn–Ga martensite. J. Appl. Phys. 95, 1531 (2004).CrossRefGoogle Scholar
  35. 35.
    J. J. Rhyne, S. Foner, E. J. McNiff, Jr. and R. Doclo. Rare earth metal single crystals. I. High-field properties of Dy, Er, Ho, Tb, and Gd. J. Appl. Phys. 39, 892 (1968).CrossRefGoogle Scholar
  36. 36.
    R. D. James and M. Wuttig. Magnetostriction of martensite. Phi. Mag. A 77, 1273 (1998).CrossRefGoogle Scholar
  37. 37.
    T. Kakeshita, et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502–1504 (2000).CrossRefGoogle Scholar
  38. 38.
    J. Pons, et al. Ferromagnetic SMA’s: Alternatives to Ni-Mn-Ga. Mat. Sci. Eng. A 481, 57 (2008).Google Scholar
  39. 39.
    T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi and K. Kishio. Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J. Appl. Phys. 93, 8647–8649 (2003).CrossRefGoogle Scholar
  40. 40.
    Y. Sutou, et al. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358–4360 (2004).CrossRefGoogle Scholar
  41. 41.
    J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Martensitic transformation and magnetic properties in NiFeGaCo magnetic shape memory alloys. Acta Materialia 56, Nr. 13, S. 3177–3186 (2008).CrossRefGoogle Scholar
  42. 42.
    K. Oikawa, et al. Promising ferromagnetic Ni–Co-Al shape memory alloy system. Appl. Phys. Lett. 79, 3290–3292 (2001).CrossRefGoogle Scholar
  43. 43.
    K. Oikawa, et al. Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys. Appl. Phys. Lett. 81, 5201–5203 (2002).CrossRefGoogle Scholar
  44. 44.
    H. Morito, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida and K. Oikawa. Magnetic-field-induced strain of Fe–Ni–Ga in single-variant state. Appl. Phys. Lett. 83, 4993 (2003).CrossRefGoogle Scholar
  45. 45.
    H. Morito, A. Fujita, K. Oikawa, K. Ishida, K. Fukamichi and R. Kainuma. Stress-assisted magnetic-field-induced strain in Ni–Fe–Ga–Co ferromagnetic shape memory alloys. Appl. Phys. Lett. 90, 062505 (2007).CrossRefGoogle Scholar
  46. 46.
    J. G. Booth. Ch. 3, Heusler alloys in Ferromagnetic Materials Vol. 4, edited by E. P. Wohlfarth and K. H. J. Buschow. Elsevier, Amsterdam, (1988).Google Scholar
  47. 47.
    P. J. Webster. Heusler alloys. Contemporary Physics 10, 559–577 (1969).CrossRefGoogle Scholar
  48. 48.
    P. J. Webster, K. R. A. Ziebeck, S. L. Town and M. S. Peak. Magnetic order and phase transformation in Ni2MnGa alloy. Philos. Mag. B: Phys. Condens. Matter: Statistical Mechanics, Electronic, Optical and Magnetic Properties 49, 295–310 (1984).Google Scholar
  49. 49.
    V. V. Khovailo, T. Takagi, A. N. Vasilev, H. Miki, M. Matsumoto and R. Kainuma. On order-disorder (L21·B2’) phase transition in Ni2+xMn1-xGa Heusler alloys. Physica Status Solidi (a) 183, R1 (2001).CrossRefGoogle Scholar
  50. 50.
    P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K.-U. Neumann, B. Ouladdiaf and K. R. A. Ziebeck. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J. Phys.: Condens. Mat. 14, 10159 (2002).CrossRefGoogle Scholar
  51. 51.
    M. Richard, J. Feuchtwanger, D. Schlagel, T. Lograsso, S. M. Allen and R. C. O’Handley. Crystal structure and transformation behavior of Ni–Mn–Ga martensites. Scripta Materialia 54, 1797 (2006).CrossRefGoogle Scholar
  52. 52.
    M. Kreissl, K. U. Neumann, T. Stephens and K. R. A. Ziebeck. The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni2MnGa. J. Phys. 15, 3831 (2003).Google Scholar
  53. 53.
    U. Gaitzsch, M. Potschke, S. Roth, N. Mattern, B. Rellinghaus, L. Schultz. Structure formation in martensitic Ni50Mn30Ga20 MSM alloy. J. Alloys Comp. 443, 99 (2007).CrossRefGoogle Scholar
  54. 54.
    V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev and A. N. Vasiliev. Phase transitions in Ni2+xMn1-xGa with a high Ni excess. Phys. Rev. B 72, 224408 (2005).CrossRefGoogle Scholar
  55. 55.
    G. D. Liu, J. L. Chen, Z. H. Liu, X. F. Dai, G. H. Wu, B. Zhang and X. X. Zhang. Martensitic transformation and shape memory effect in a ferromagnetic shape memory alloy: Mn2NiGa. Appl. Phys. Lett. 87, 262504 (2005).CrossRefGoogle Scholar
  56. 56.
    Chernenko V. A., Segui C., Cesari E., Pons J. and Kokorin V. V. Sequence of martensitic transformations in Ni–Mn–Ga alloys. Phys. Rev. B 57, 2659–2662 (1998).CrossRefGoogle Scholar
  57. 57.
    V. A. Chernenko, E. Cesari, V. V. Khovailo, J. Pons, C. Segui and T. Tagaki. Intermartensitic phase transformations in Ni–Mn–Ga studied under magnetic field. J. Magn. Magn. Mater. 290, 871 (2005).CrossRefGoogle Scholar
  58. 58.
    N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko and V. K. Lindroos. Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 95, 8074 (2004).CrossRefGoogle Scholar
  59. 59.
    X. Jin, M. Marioni, D. Bono, S. M. Allen, R. C. O’Handley and T. Y. Hsu. Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration. J. Appl. Phys. 91, 8222 (2002).CrossRefGoogle Scholar
  60. 60.
    P. Entel, V. D. Buchelnikov, V. V. Khovailo, et al. Modelling the phase diagram of magnetic shape memory Heusler alloys. J. Phys. D-Appl. Phys. 39(5), 865 (2006).CrossRefGoogle Scholar
  61. 61.
    L. Manosa, A. G. Comas, E. Obrad´o and A. Planes. Premartensitic phase transformation in the Ni2MnGa shape memory alloy. Mat. Sci. Eng. A 273–276, 329–332 (1999).CrossRefGoogle Scholar
  62. 62.
    L. Manosa, A. Gonzalez-Comas, E. Obradó, A. Planes, V. A. Chernenko, V. V. Kokorin and E. Cesari. Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy. Phys. Rev. B, 55(17), 11068, (1997).CrossRefGoogle Scholar
  63. 63.
    L. Manosa, A. Planes, J. Zarestky, T. A. Lograsso, D. L. Schlagel and C. Stassis. Phonon softening in Ni–Mn–Ga alloys. Phys. Rev. B, 64, 024305 (2001).CrossRefGoogle Scholar
  64. 64.
    V. V. Martynov and V. V. Kokorin. The crystal structure of thermally- and stress-induced Martensites in Ni2MnGa single crystals. J. Phys. III France 2, 739 (1992).CrossRefGoogle Scholar
  65. 65.
    V. A. Chernenko, V. L’Vov, J. Pons and E. Césari. Superelasticity in high-temperature Ni–Mn–Ga alloys. J. Appl. Phys. 93, 2394–2399 (2003).CrossRefGoogle Scholar
  66. 66.
    O. Söderberg, K. Koho, T. Sammi, X. W. Liu, A. Sozinov, N. Lanska and V. K. Lindroos. Effect of the selected alloying on Ni–Mn–Ga alloys. Mat. Sci. Eng. A 378/1–2, 386–393 (2004).Google Scholar
  67. 67.
    G. H. Wu, W. H. Wang, J. L. Chen, L. Ao, Z. H. Liu, W. S. Zhan, T. Liang and H. B. Xu. Magnetic properties and shape memory of Fe-doped Ni52Mn24Ga24 single crystals. Appl. Phys. Lett. 80, 634 (2002).CrossRefGoogle Scholar
  68. 68.
    Y. Ge, O. Söderberg, N. Lanska, A. Sozinov, K. Ullakko and V. K. Lindroos. Crystal structure of three NiMnGa alloys in powder and bulk materials. J. de Physique IV 112, 921 (2003).CrossRefGoogle Scholar
  69. 69.
    J. Pons, V. A. Chernenko, R. Santamarta and E. Césari. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Materialia 48, 3027–3038 (2000).CrossRefGoogle Scholar
  70. 70.
    B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo and K. Itagaki. Low temperature crystal structure of Ni–Mn–Ga alloys. J. Alloys Comp. 290, 137–143 (1999).CrossRefGoogle Scholar
  71. 71.
    A. T. Zayak, P. Entel, J. Enkovaara, A. Ayuela and R. M. Nieminen. First principles investigations of homogeneous lattice-distortive strain and shuffles in Ni2MnGa. J. Phys.: Condens. Mat. 15, 159–164 (2003).CrossRefGoogle Scholar
  72. 72.
    K. Zasimchuk, V. V. Kokorin, V. V. Martynov, A. V. Tkachenko and V. A. Chernenko. Crystal structure of martensite in Heusler alloy Ni2MnGa. Phys. Met. Metall. 69, 104 (1990)Google Scholar
  73. 73.
    J. Pons, R. Santamarta, V. A. Chernenko and E. Césari. HREM study of different martensitic phases in Ni–Mn–Ga alloys. Mater. Chem. Phys. 81, 457 (2003).Google Scholar
  74. 74.
    J. Pons, R. Santamarta, E. Césari and V. A. Chernenko. Martensitic structures in Ni–Mn–Ga. Appl. Cryst. 18, 186–199 (2001).Google Scholar
  75. 75.
    A. Zheludev, S. M. Shapiro P. Wochner and L. E. Tanner. Precursor effects and premartensitic transformation in Ni2MnGa. Phys. Rev. B 54, 15045–15050 (1996).CrossRefGoogle Scholar
  76. 76.
    A. Ayuela, J. Enkovaara and R. M. Nieminen. Ab initio study of tetragonal variants in Ni2MnGa alloy. J. Phys. – Cond. Matt. 14, 5325 (2002).CrossRefGoogle Scholar
  77. 77.
    J. Enkovaara, A. Ayuela, A. T. Zayak, P. Entel, L. Nordstrom, M. Dube, J. Jalkanen, J. Impola and R. M. Nieminen. Magnetically driven shape memory alloys. Mater. Sci. Eng. A 378, 52 (2004).CrossRefGoogle Scholar
  78. 78.
    M. Thomas, O. Heczko, J. Buschbeck, U. K. Rößler, J. McCord, N. Scheerbaum, L. Schultz and S. Fähler. Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO (100). New J. Phys. 10, 023040 (2008).CrossRefGoogle Scholar
  79. 79.
    L. Straka, O. Heczko, V. Novak and N. Lanska. Study of austenite-martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. de Physique IV – Proceedings 112, 911 (2003).CrossRefGoogle Scholar
  80. 80.
    T. Kanomata, K. Shirakawa and T. Kaneko. Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys nickel-manganese-Z (Ni2MnZ) (Z = aluminum, gallium, indium, tin and antimony). J. Magn. Magn. Mater. 65, 76–82 (1987).CrossRefGoogle Scholar
  81. 81.
    J. Enkovaara, O. Heczko, A. Ayuela and R. M. Nieminen. Coexistence of ferromagnetic and antiferromagnetic order in Mn–doped Ni2MnGa. Phys. Rev. B 67, 212405 (2003).CrossRefGoogle Scholar
  82. 82.
    O. Heczko, L. Straka and K. Ullakko. Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. de Physique IV, 112, 959 (2003).CrossRefGoogle Scholar
  83. 83.
    R. Tickle and R. D. James. Magnetic and magnetomechanical properties of Ni2MnGa. J. Magn. Magn. Mat. 195, 627 (1999).CrossRefGoogle Scholar
  84. 84.
    L. Straka and O. Heczko. Magnetic anisotropy in Ni–Mn–Ga martensites. J. Appl. Phys. 92, 8636 (2003).CrossRefGoogle Scholar
  85. 85.
    L. Straka, O. Heczko and N. Lanska. Magnetic properties of various martensitic phases in Ni–Mn–Ga alloy. IEEE Trans. Magn. 38, 2835–2837 (2002).CrossRefGoogle Scholar
  86. 86.
    F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra and Righi L. Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2+xMn1+yGa1+z (x+y+z=0) Heusler alloys. Appl. Phys. Lett. 81, 4032 (2002).CrossRefGoogle Scholar
  87. 87.
    J. Enkovaara, A. Ayuela, L. Nordstrom and R. M. Nieminen. Structural, thermal, and magnetic properties of Ni2MnGa. J. Appl. Phys. 91, 7798 (2002).CrossRefGoogle Scholar
  88. 88.
    A. Sozinov, A. A. Likhachev and K. Ullakko. Magnetic and magnetomechanical properties of Ni–Mn–Ga alloys with easy axis and easy plane of magnetization. In: C.S. Lynch (Ed.) Proceedings of SPIE, 4333, 189–196 (2001).Google Scholar
  89. 89.
    O. Heczko and L. Straka. Compositional dependence of structure, magnetization and magnetic anisotropy in Ni–Mn–Ga magnetic shape memory alloys, J. Magn. Magn. Mat. 272–276, 2045 (2004).CrossRefGoogle Scholar
  90. 90.
    O. Heczko and L. Straka. Determination of ordinary magnetostriction in Ni–Mn–Ga magnetic shape memory alloy, J. Magn. Magn. Mat. 290–291, 846 (2005).CrossRefGoogle Scholar
  91. 91.
    O. Heczko, L. Straka, I. Aaltio and S.-P. Hannula. Strain and concurrent magnetization changes in magnetic shape memory Ni–Mn–Ga single crystals – experiment and model. Mat. Sci. Eng. A 481–482, 283 (2008).CrossRefGoogle Scholar
  92. 92.
    O. Heczko, L. Straka and S.-P. Hannula. Stress dependence of magnetic shape memory effect and its model. Mat. Sci. Eng. A 438–440, 1003–1006 (2006).CrossRefGoogle Scholar
  93. 93.
    O. Heczko, K. Jurek and K. Ullakko. Magnetic properties and magnetic domain structure of magnetic shape memory Ni–Mn–Ga alloy. J. Magn. Magn. Mat. 226–230, 996–998 (2001).CrossRefGoogle Scholar
  94. 94.
    Y. Ge, O. Heczko, O. Söderberg and V. K. Lindroos. Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159 (2004).CrossRefGoogle Scholar
  95. 95.
    Y. Ge, O. Heczko, O. Söderberg and S.-P. Hannula. Direct optical observation of magnetic domains in Ni–Mn–Ga martensite. Appl. Phys. Lett. 89, 082502 (2006).CrossRefGoogle Scholar
  96. 96.
    Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz and J. McCord. Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys. Appl. Phys. Lett. 90, 192504 (2007)CrossRefGoogle Scholar
  97. 97.
    H. D. Chopra, C. Ji and V. V. Kokorin. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Phys. Rev. B 61, R14913 (2000).CrossRefGoogle Scholar
  98. 98.
    D. I. Paul, W. McGehee, R. C. O’Handley and M. Richard. Ferromagnetic shape memory alloys: A theoretical approach. J. Appl. Phys. 101, 123917 (2007).CrossRefGoogle Scholar
  99. 99.
    V. Soolshenko, N. Lanska and K. Ullakko. Structure and twinning stress of martensites in non-stoichiometric Ni2MnGa single crystal. J. de Physique IV France 112, 947 (2003).CrossRefGoogle Scholar
  100. 100.
    L. Dai, J. Cullen and M. Wuttig. Intermartensitic transformation in a NiMnGa alloy. J. Appl. Phys. 95, 6957–6959 (2004).Google Scholar
  101. 101.
    I. Aaltio, O. Heczko, O. Söderberg and S.-P- Hannula, ch. 20. Shape Memory alloys and Effects: Types, Functions, Modeling and Applications (Magnetically Controlled Shape Memory Alloys). In M. Schwartz (Ed.), Smart Materials, CRC Press, Taylor and Francis Group, LLC (2009).Google Scholar
  102. 102.
    M. Stipcich, L. Manosa, A. Planes, M. Morin, J. Zarestky, T. A. Lograsso and C. Stassis. Elastic constants of Ni–Mn–Ga magnetic shape memory alloys. Phys. Rev B, 70, 054115 (2004).CrossRefGoogle Scholar
  103. 103.
    L. Straka, V. Novak, M. Landa and O. Heczko. Acoustic emission of Ni–Mn–Ga magnetic shape memory alloy in different straining modes. Mat. Sci. Eng. A 374, 263–269 (2004).CrossRefGoogle Scholar
  104. 104.
    P. Molnar, P. Sittner, P. Lukas, S-P. Hannula and O. Heczko. Stress-induced martensite variant reorientation in magnetic shape memory Ni–Mn–Ga single crystal studied by neutron diffraction. Smart Mater. Struct. 17, 035014 (5 pp) (2008).CrossRefGoogle Scholar
  105. 105.
    P. Molnar, P. Sittner, V. Novak and O. Heczko. Magnetic field induced reorientation and mechanical training process in NiMnGa single crystal, Proc. ICOMAT 2008, Santa Fe, to be published in TMR.Google Scholar
  106. 106.
    O. Heczko, A. Soroka and S.-P. Hannula. Magnetic shape memory effect in thin foils. Appl. Phys. Lett. 93, 022503, (2008).Google Scholar
  107. 107.
    P. Molnar, P. Sittner, V. Novak, J. Prokleska, V. Sechovsky, B. Ouladdiaf, S. P. Hanulla and O. Heczko. In situ neutron diffraction study of magnetic field induced martensite reorientation in Ni–Mn–Ga under constant stress. J. Phys.: Condens. Mat. 20, 104224 (2008).CrossRefGoogle Scholar
  108. 108.
    O. Heczko, K. Prokes and S-P. Hannula. Neutron diffraction studies of magnetic shape memory Ni–Mn–Ga single crystal. J. Magn. Magn. Mater. 316, 386 (2007).CrossRefGoogle Scholar
  109. 109.
    M. L. Richard. Systematic analysis of the crystal structure, chemical ordering and microstructure of Ni–Mn–Ga ferromagnetic shape memory alloys. Ph.D. thesis, MIT (2005).Google Scholar
  110. 110.
    L. Dai, M. Wuttig and E. Pagounis. Twin stabilization in a ferromagnetic shape memory alloy. Scripta Materialia 55, 807–810 (2006).CrossRefGoogle Scholar
  111. 111.
    L. Straka, O. Heczko, H. Hänninen. Activation of magnetic shape memory effect in Ni–Mn–Ga alloys by mechanical and magnetic treatment. Acta Materialia 56, 5492–5499 (2008).Google Scholar
  112. 112.
    D. I. Paul, J. Marquiss and D. Quattrochi. Theory of magnetization: Twin boundary interaction in ferromagnetic shape memory alloys. J. Appl. Phys. 93, 4561 (2003).CrossRefGoogle Scholar
  113. 113.
    R. C. O’Handley, D. I. Paul, M. Marioni, C. P. Henry, M. Richard, P. G. Tello and S. M. Allen. Micromagnetic and micromechanics of Ni–Mn–Ga actuation. J. Phys. IV France, 112, 973 (2003).CrossRefGoogle Scholar
  114. 114.
    E. V. Gomonaj and V. A. Lvov. Martensitic phase transition with two-component order parameter in a stressed cubic crystal. Phase Transitions 41, 9 (1994).CrossRefGoogle Scholar
  115. 115.
    A. A. Likhachev and K. Ullakko. Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A 275, 142 (2000).CrossRefGoogle Scholar
  116. 116.
    A. A. Likhachev, A. Sozinov and K. Ullakko. Different modeling concepts of magnetic shape memory and their comparison with some experimental results obtained in Ni–Mn–Ga. Mater. Sci. Eng. A 378, 513–518 (2004),.CrossRefGoogle Scholar
  117. 117.
    R. C. O’Handley. Model for strain and magnetization in magnetic shape memory alloys. J. Appl. Phys. 83, 3263–3270 (1998).CrossRefGoogle Scholar
  118. 118.
    B. Kiefer and D. C. Lagoudas. Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys, Philos. Mag. 85, 4289 (2005).CrossRefGoogle Scholar
  119. 119.
    N. Okamoto, T. Fukuda and T. Kakeshita. Magnetocrystalline anisotropy constant and twinning stress in martensite phase of Ni–Mn–Ga. Mat. Sci. Eng. A 438, 948 (2006).CrossRefGoogle Scholar
  120. 120.
    J. Kiang and L. Tong. Modelling of magneto-mechanical behaviour of Ni–Mn–Ga single crystals. J. Magn. Magn. Mater. 292, 394 (2005).CrossRefGoogle Scholar
  121. 121.
    R. C. O’Handley, S. J. Murray, M. Marioni, H. Nembach and S. M. Allen. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials, J. Appl. Phys. 87, 4712 (2000).CrossRefGoogle Scholar
  122. 122.
    R. C. O’Handley and S. M. Allen. Ferromagnetic shape memory materials. Encyclopedia of Smart Materials, John Wiley and Sons, New York 936–951 (2001). And R. C. O’Handley, D. I. Paul, S. M. Allen, M. Richard, J. Feuchtwanger, B. Peterson, R. Techapiesancharoenkij, M. Barandiaran, P. Lazpita. Model for temperature dependence of field-induced strain in ferromagnetic shape memory alloys, Mat. Sci. Eng. A 438–440, 445–449 (2006).Google Scholar
  123. 123.
    A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Koho, K. Ullakko and V. K. Lindroos. Stress-induced variant rearrangement in Ni–Mn–Ga single crystals with nonlayered tetragonal martensitic structure. J. Physique IV, 115, 127 (2004).CrossRefGoogle Scholar
  124. 124.
    A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Ullakko and V. K. Lindroos. Stress- and magnetic-field-induced variant rearrangement in Ni–Mn–Ga single crystals with seven-layered martensitic structure. Mat. Sci. Eng. A 378, 401 (2006).Google Scholar
  125. 125.
    L. Straka and O. Heczko. Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic field. J. Magn. Magn, Mat. 290–291, 829 (2005).CrossRefGoogle Scholar
  126. 126.
    L. Straka. Magnetic and magneto-mechanical properties of Ni–Mn–Ga magnetic shape memory alloys. PhD thesis, TKK Helsinki (2007).Google Scholar
  127. 127.
    L. Straka and O. Heczko. Magnetization changes in Ni–Mn–Ga magnetic shape memory single crystal during compressive stress reorientation. Scripta Materialia 54, 1549–1552 (2006).CrossRefGoogle Scholar
  128. 128.
    V. A. Chernenko, V. A. L’vov, P. Mullner and G. Kostorz, T. Takagi. Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: Experiment and modeling. Phys. Rev. B 69, 134410 (2004).CrossRefGoogle Scholar
  129. 129.
    T. Kakeshita, T. Fukuda and T. Takeuchi. Magneto-mechanical evaluation for twinning plane movement driven by magnetic field in ferromagnetic shape memory alloys. Mat. Sci. Eng. A 438–440, 12 (2006).CrossRefGoogle Scholar
  130. 130.
    R. C. O’Handley, D. I. Paul, S. M. Allen, M. Richard, J. Feuchtwanger, B. Peterson, R. Techapiesancharoenkij, M. Barandiaran and P. Lazpita. Model for temperature dependence of field-induced strain in ferromagnetic shape memory alloys. Mat. Sci. Eng. A 438–440, 445–449 (2006).CrossRefGoogle Scholar
  131. 131.
    O. Heczko and K. Ullakko. Effect of temperature on magnetic properties of Ni–Mn–Ga Magnetic Shape Memory (MSM) alloys. IEEE Trans. Magn. 37, 2672 (2001).CrossRefGoogle Scholar
  132. 132.
    L. Straka, O. Heczko and S.-P. Hannula. Temperature dependence of reversible field-induced strain in Ni–Mn–Ga single crystal. Scripta Mat. 54, 1497 (2006).CrossRefGoogle Scholar
  133. 133.
    N. Glavatska, G. Mogylny and S. Danilkin. Temperature dependence of lattice parameters in martensite and effect of the external magnetic field on martensite structure in Ni2MnGa studied in-situ with neutron diffraction. Mater. Sci. Forum 443–444, 397–400 (2004).CrossRefGoogle Scholar
  134. 134.
    O. Heczko and L. Straka. Temperature dependence and temperature limits of magnetic shape memory effect. J. Appl. Phys. 94(12), 7139–7143 (2003).CrossRefGoogle Scholar
  135. 135.
    O. Soderberg, L. Straka, O. Heczko, V. Novak and V. K. Lindroos. Tensile/compressive behavior of non-layered tetragonal NiMnGa alloy. Mat. Sci. Eng. A 386, 27 (2004).Google Scholar
  136. 136.
    K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, V. K. Lindroos. Magnetic-field-induced strains in polycrystalline Ni–Mn–Ga at room temperature. Scripta Mat. 44, 475 (2001).CrossRefGoogle Scholar
  137. 137.
    U. Gaitzsch, M. Potschke, S. Roth, B. Rellinghaus, L. Schultz. A 1% magnetostrain in polycrystalline 5 M Ni-Mn-Ga. Acta Materialia 57, 365–370 (2009).Google Scholar
  138. 138.
    J. Pons, C. Seguí, V. A. Chernenko, E. Cesari, P. Ochin and R. Portier. Transformation and ageing behaviour of melt-spun Ni–Mn–Ga shape memory alloys. Mat. Sci. Eng. A, 273–275, 315 (1999).CrossRefGoogle Scholar
  139. 139.
    O. Heczko, M. Thomas, R. Niemann, L. Schultz and S. Fähler. Magnetically induced martensite transition in freestanding epitaxial Ni-Mn-Ga films, Appl. Phys. Lett. 94, 152513 (2009).CrossRefGoogle Scholar
  140. 140.
    J. Feuchtwanger, N. Vidal, J. M. Barandiaran, J. Gutierrez, T. Hansen, M. Peel, C. Mondelli, R. C. O’Handley and S. M. Allen. Rearrangement of twin variants in ferromagnetic shape memory alloy-polyurethane composites studied by stroboscopic neutron diffraction. J. Phys. Condens. Matt. 20, 4247 (2008). A. Berkowitz, UCSD, personal communication, 2005.CrossRefGoogle Scholar
  141. 141.
    J. Feuchtwanger, M. L. Richard, Y. J. Tang, A. E. Berkowitz, R. C. O’Handley and S. M. Allen. Large energy absorption in Ni–Mn–Ga/polymer composites. J. Appl. Phys. 97, 10M319 (2005).CrossRefGoogle Scholar
  142. 142.
    N. Scheerbaum, D. Hinz, O. Gutfleisch, K.-H. Muller and L. Schultz. Textured polymer bonded composites with Ni–Mn–Ga magnetic shape memory particles. Acta Mat. 55, 2707 (2007).CrossRefGoogle Scholar
  143. 143.
    N. Scheerbaum, O. Heczko, J. Liu, D. Hinz, L. Schultz and O. Gutfleisch. Magnetic field-induced twin boundary motion in polycrystalline Ni–Mn–Ga fibres. New J. Phys. 10, 073002 (2008).CrossRefGoogle Scholar
  144. 144.
    N. Scheerbaum, D. Hinz, O. Gutfleisch, W. Skrotzki and L. Schultz. Compression-induced texture change in NiMnGa–polymer composites observed by synchrotron radiation. J. Appl. Phys., 101 09C501 (2007).CrossRefGoogle Scholar
  145. 145.
    F. J. Castaño, B. Nelson-Cheeseman, R. C. O’Handley, C. A. Ross, C. Redondo and F. Castaño. Structure and thermomagnetic properties of polycrystalline Ni–Mn–Ga thin films. J. Appl. Phys., 93(10), 8492(2003).CrossRefGoogle Scholar
  146. 146.
    V. A. Chernenko, M. Hagler, P. Müllner, V. M. Kniazkyi, V. A. L’vov, M. Ohtsuka and S. Besseghini. Magnetic susceptibility of martensitic Ni–Mn–Ga film. J. Appl. Phys. 101, 053909 (2007).CrossRefGoogle Scholar
  147. 147.
    J. W. Dong, et al. Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs. Appl. Phys. Lett. 75, 1443 (1999).CrossRefGoogle Scholar
  148. 148.
    G. Jakob and H. J. Elmers. Epitaxial films of the magnetic shape memory material Ni2MnGa. J. Magn. Magn. Mater. 310, 2779 (2007).CrossRefGoogle Scholar
  149. 149.
    O. Heczko, M. Thomas, J. Buschbeck, L. Schultz and S. Fähler. Epitaxial Ni–Mn–Ga films deposited on SrTiO3 and evidence of magnetically induced reorientation of martensitic variants at room temperature. Appl. Phys. Lett. 92, 1 (2008).CrossRefGoogle Scholar
  150. 150.
    M. Thomas, O. Heczko, J. Buschbeck, Y.W. Lai, J. McCord, L. Schultz and S. Fähler. Stray field induced actuation mode of freestanding magnetic shape memory films, Adv. Mat. (2009), DOI: 10.1002/adma.200900469.Google Scholar
  151. 151.
    Y. Boonyongmaneerat, M. Chmielus, D. C. Dunand and P. Mullner. Increasing magnetoplasticity in polycrystalline Ni–Mn–Ga by reducing internal constraints through porosity. Phys. Rev. Lett. 99, 247201 (2007).CrossRefGoogle Scholar
  152. 152.
    I. Aaltio, M. Lahelin, O. Soderberg, O. Heczko, B. Lofgren, Y. Ge, J. Seppala and S.-P. Hannula. Temperature dependence of the damping properties of Ni–Mn–Ga alloys. Mat. Sci. Eng. A 481–482, 314–317 (2008).CrossRefGoogle Scholar
  153. 153.
    I. Aaltio, K. P. Mohanchandra, O. Heczko, M. Lahelin, Y. Ge, G.P. Carman, O. Soderberg, B. Lofgren J. Seppala and S.-P. Hannula. Temperature dependence of mechanical damping in Ni–Mn–Ga austenite and non-modulated martensite. Scripta Mat. 59, 550 (2008).CrossRefGoogle Scholar
  154. 154.
    I. Suorsa, J. Tellinen, K. Ullakko and E. Pagounis. Voltage generation induced by mechanical straining in magnetic shape memory materials. J. Appl. Phys. 95, 8054 (2004).CrossRefGoogle Scholar
  155. 155.
    I. Karaman, B. Basaran, H. E. Karaca, A. I. Karsilayan and Y. Chumlyakov. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 90, 172505 (2007).CrossRefGoogle Scholar
  156. 156.
    V. V. Kokorin, V. A. Chernenko, V. I. Val’kov, S. M. Konoplyuk and E. A. Khapalyuk. Magnetic transformation in Ni2MnGa compounds. Phys. Solid State 37, 2049–2051 (1995).Google Scholar
  157. 157.
    M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel. Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys. Rev B, 72, 094435 (2005).CrossRefGoogle Scholar
  158. 158.
    J. Marcos, A. Planes, L. Manosa, F. Casanova, X. Batlle, A. Labarta and B. Martinez. Magnetic field induced entropy change and magnetoelasticity in Ni–Mn–Ga alloys. Phys. Rev B, 66, 224413 (2002).CrossRefGoogle Scholar
  159. 159.
    O. Soderberg, I. Aaltio, Y. Ge, O. Heczko and S.-P. Hannula. Ni–Mn–Ga multifunctional compounds. Mat. Sci. Eng. A 481–482, 80–85 (2008).CrossRefGoogle Scholar
  160. 160.
    N. Glavatska. Origin of the time-dependent magnetoplasticity in the Ni–Mn–Ga magnetic shape memory martensites. Mat. Sci. Eng. A 481–482, 73–79F (2008).CrossRefGoogle Scholar
  161. 161.
    F. Xiong, Y. Liu and E. Pagounis. Thermally induced fracture of single crystal Ni–Mn–Ga ferromagnetic shape memory alloy. J. Alloys Comp. 415, 188 (2006).CrossRefGoogle Scholar
  162. 162.
    J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, K. Ullakko and H. Borgmann (Ed.). Proc. ACTUATOR 2002, Bremen, Germany (2002), pp. 566–569.Google Scholar
  163. 163.
    O. Heczko, L. Straka, O. Söderberg and S.-P. Hannula. Magnetic shape memory fatigue, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, edited by William D. Armstrong, Proceedings of SPIE Vol. 5761 (2005) p. 513.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Oleg Heczko
    • 1
    • 2
  • Nils Scheerbaum
    • 2
  • Oliver Gutfleisch
    • 2
  1. 1.Institute of Physics, Academy of SciencesPrahaCzech Rep
  2. 2.Leibniz Institute for Solid State and Materials Research (IFW Dresden)Institute for Metallic MaterialsDresdenGermany

Personalised recommendations