The Magnetic Microstructure of Nanostructured Materials

  • Rudolf Schäfer


The magnetic microstructure and magnetization processes of nanostructured materials are reviewed in a phenomenological way, mainly based on domain observation by magneto-optical Kerr microscopy. This covers nanocrystalline soft magnetic ribbons and films as well as nanostructured hard magnetic materials. For comparison also the domain structure in coarse-grained material and amorphous ribbons are briefly touched to provide the frame for the nanostructured materials.

In nanocrystalline ribbons or films, the random magnetocrystalline anisotropy of the ultrafine grain structure is largely averaged out by exchange coupling. The soft magnetic properties are rather controlled by uniaxial, induced anisotropies that are uniform on a scale much larger than the exchange length. The interplay between these uniform and the random anisotropy results in a different degree of microscopic magnetization disorder which is reflected in the magnetization processes.

In high-anisotropy materials with exchange-coupled grains in the 10 nm regime (exchange-enhanced nanocrystalline permanent magnets), a highly irregular domain structure is found, consisting of immobile and high-coercive patch domains. If exchange coupling between the grains is interrupted, the so-called interaction domains are observed due to the predominance of magnetostatic interactions between the (single domain) grains.


Easy Axis Magnetocrystalline Anisotropy Uniaxial Anisotropy Soft Magnetic Property Amorphous Ribbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many domain pictures in the chapter on nanocrystalline ribbons have been obtained by Sybille Flohrer (IFW Dresden, now at Vacuumschmelze, Hanau). For their interpretation Giselher Herzer (Vacuumschmelze) made decisive contributions. He also provided us with most of the NdCuFeBSi ribbons for domain imaging. Many thanks to both of them. Thanks also to Jeffrey McCord (IFW Dresden) for fruitful discussion on thin film magnetism and to Ludwig Schultz (IFW Dresden) for his continuous support and interest in domain research.


  1. 1.
    A. Hubert and R. Schäfer: Magnetic Domains. The Analysis of Magnetic Microstructures. Springer, Berlin (1998)Google Scholar
  2. 2.
    G. Herzer: Nanocrystalline soft magnetic alloys. In: K.H.J. Buschow, editor. Handbook of magnetic materials, vol. 10., Elsevier Science, pp. 415 – 462 (1997)Google Scholar
  3. 3.
    R. Schäfer and S. Schinnerling: Bulk domain analysis in FeSi crystals. J. Magn. Magn. Mat. 215–216, 140–146 (2000)CrossRefGoogle Scholar
  4. 4.
    R. Schäfer: Domains in extremely soft magnetic materials. J. Magn. Magn. Mat. 215–216, 652–663 (2000)CrossRefGoogle Scholar
  5. 5.
    Y. Yoshizawa, S. Oguma, K. Yamauchi: New Fe-based soft magnetic alloys composed of ultrafine grain structure J. Appl. Phys. 64, 6044 (1988)CrossRefGoogle Scholar
  6. 6.
    R. Alben, J. Becker, M.C. Chi: Random anisotropy in amorphous ferromagnets. J. Appl. Phys. 49, 1653–1658 (1978)CrossRefGoogle Scholar
  7. 7.
    G. Herzer: Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans. Magn. 25, 3327–3329 (1989)CrossRefGoogle Scholar
  8. 8.
    G. Herzer: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)CrossRefGoogle Scholar
  9. 9.
    G. Herzer: Soft magnetic nanocrystalline materials, Scripta Metallurciga 33, 1741–1756 (1995)Google Scholar
  10. 10.
    G. Herzer: The random anisotropy model – a critical review and update. In Properties and Applications of Nanocrystalline alloys from amorphous precursors, In: B. Idzikowski, P. Svec and M. Miglierini editors. Kluwer Academic Publishers, pp. 15–34 (2005)Google Scholar
  11. 11.
    G. Herzer: Soft magnetic materials – nanocrystalline alloys. In: H. Kronmüller and S. Parkin editors. Handbook of magnetism and advanced magnetic materials, vol. 4., John Wiley & Sons Ltd, p. 1882 (2007)Google Scholar
  12. 12.
    R. Schäfer, A. Hubert, G. Herzer: Domain observation on nanocrystalline material. J. Appl. Phys. 69, 5325 (1991)CrossRefGoogle Scholar
  13. 13.
    P.J. van der Zaag, J.J.M. Ruigrok, A. Noordermeer, M.H.W.M. van Delden, et al.: The initial permeability of polycrystalline MnZn ferrites: The influence of domain and microstructure. J. Appl. Phys. 74, 4085–4095 (1993)CrossRefGoogle Scholar
  14. 14.
    P.J. van der Zaag, P.J. van der Valk, M.T. Rekveldt: A domain size effect in the magnetic hysteresis of NiZn-ferrite. Appl. Phys. Lett. 69, 2927–2929 (1996)CrossRefGoogle Scholar
  15. 15.
    M. Müller, T. Lederer, K.H. Fornacon, R. Schäfer: Grain structure, coercivity and high frequency noise in soft magnetic Fe-81Ni-6Mo alloys. J. Magn. Magn. Mat. 177, 231–232 (1998)CrossRefGoogle Scholar
  16. 16.
    G. Herzer: Anisotropies in soft magnetic nanocrystalline alloys. J. Magn. Magn. Mat. 294, 99–106 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Flohrer, R. Schäfer, Ch. Polak, G. Herzer: Interplay of uniform and random anisotropy in nanocrystalline soft magnetic alloys. Acta Mat. 53, 2937–2942 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Michels and J. Weissmüller: Magnetic-field-dependent small-angle neutron scattering on random anisotropy ferromagnets. Rep. Prog. Phys. 71, 066501 (2008)CrossRefGoogle Scholar
  19. 19.
    R. Schäfer and G. Herzer: Continuous Magnetization Patterns in Amorphous Ribbons. IEEE Trans. Magn. 37(4), 2245–2247 (2001)CrossRefGoogle Scholar
  20. 20.
    A. Hernando and T. Kulik: Exchange interactions through amorphous paramagnetic layers in ferromagnetic nanocrystals. Phys. Rev. B 49, 7064–7067 (1994)CrossRefGoogle Scholar
  21. 21.
    J. Löffler, H.B. Braun, W. Wagner, K. Kostorz, A. Wiedenmann: Magnetization processes in nanostructured metals and small-angle neutron scattering. Phys. Rev. B 71, 134410 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Flohrer, R. Schäfer, J. McCord, S. Roth, L. Schultz, F. Fiorillo, W. Günther, G. Herzer: Dynamic magnetization process of nanocrystalline tape wound cores with transverse field-induced anisotropy. Acta Mat. 54, 4693–4698 (2006)CrossRefGoogle Scholar
  23. 23.
    R. Schäfer: Investigation of Domains and Dynamics of domain walls by the magneto-optical Kerr effect. In: H. Kronmüller and S. Parkin editors. Handbook of magnetism and advanced magnetic materials, vol. 3., John Wiley & Sons Ltd, p. 1513 (2007)Google Scholar
  24. 24.
    S. Flohrer, R. Schäfer. J. McCord, S. Roth, G. Herzer, L. Schultz: Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta. Mat. 54, 3253–3259 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Flohrer, R. Schäfer, G. Herzer: Magnetic microstructure of nanocrystalline FeCuNbSiB soft magnets. J. Magn. Magn. Mat. (1998), J. Non-Cryst. Sol. 354, 47–51 (2008)Google Scholar
  26. 26.
    A.J. Moses, P.I. Williams, O.A. Hoshtanar: A novel instrument for real-time dynamic observation in bulk and micromagnetic materials. IEEE Trans. Magn. 41, 3736–3738 (2005)CrossRefGoogle Scholar
  27. 27.
    H.W. Fuller and M.E. Hale: Determination of magnetization distribution in thin films using electron microscopy. J. Appl. Phys. 31, 238–248 (1960)CrossRefGoogle Scholar
  28. 28.
    K.J. Harte: Theory of magnetization ripple in ferromagnetic films. J. Appl. Phys. 39, 1503–1524 (1968)CrossRefGoogle Scholar
  29. 29.
    H. Hoffmann: Theory of magnetization ripple. IEEE Trans. Magn. 4, 32–38 (1968)CrossRefGoogle Scholar
  30. 30.
    D.V. Berkov and N.L. Gorn: Quasistatic remagnetization processes in two-dimensional systems with random on-site anisotropy and dipolar interaction: Numerical simulations. Phys. Rev. B 57, 14332–14343 (1998)CrossRefGoogle Scholar
  31. 31.
    Y. Gao, D. Shindo, T. Bitoh, A. Makino: Magnetic microstructure of \(\mathrm{Fe}_{84}\mathrm{Nd}_{7}\mathrm{B}_{9}\) alloys observed by electron holography. J. Appl. Phys. 93, 7462–7464 (2003)Google Scholar
  32. 32.
    R. Schäfer, D. Chumakov, O. de Haas, L. Schultz, W. Maaß, K.U. Barholz, R. Mattheis: Magnetization Processes in Spin-Valve Meanders for Sensor Applications. IEEE Trans. Magn. 39, 2089–2097 (2003)CrossRefGoogle Scholar
  33. 33.
    M. Rührig, R. Schäfer, A. Hubert, R. Mosler, J.A. Wolf, S. Demokritov, P. Gruumlnberg: Domain Observations on Fe-Cr-Fe Layered Structures. Phys. Stat. Sol. (a) 125, 635–656 (1991)CrossRefGoogle Scholar
  34. 34.
    M. Rührig, W. Bartsch, M. Vieth, A. Hubert: Elementary magnetization processes in a low-anisotropy circular thin film disk. IEEE Trans. Magn. 26, 2807–2809 (1990)CrossRefGoogle Scholar
  35. 35.
    H.J. de Wit: Soft magnetic multilayers. Rep. Prog. Phys. 55, 113–155 (1992)Google Scholar
  36. 36.
    D. Elefant, R. Schäfer, J. Thomas, H. Vinzelberg, C.M. Schneider: Competition of spin-flip and spin-flop dominated processes in magnetic multilayers: magnetizatrion reversal, magnetotransport and domain structure in the NiFe/Cu system, Phys. Rev. B. 77, 014426 (2008)CrossRefGoogle Scholar
  37. 37.
    J. McCord, J. Westwood: Domain formation in Fe-N multilayers. J. Appl. Phys. 87, 6502–6504 (2000)CrossRefGoogle Scholar
  38. 38.
    J. Fidler, D. Suess, T. Schrefl: Rare-earth intermetallics for permanent magnet applications. In: H. Kronmüller and S. Parkin editors. Handbook of magnetism and advanced magnetic materials, vol. 4., John Wiley & Sons Ltd, p. 1945 (2007)Google Scholar
  39. 39.
    M. Marinescu, A. Gabay, G. Hadjipanayis: Rare-earth nanocrystalline and nanostructured magnets. In: H. Kronmüller and S. Parkin editors. Handbook of magnetism and advanced magnetic materials, vol. 4., John Wiley & Sons Ltd, p. 2005 (2007)Google Scholar
  40. 40.
    O. Gutfleisch, A Bollero, A. Handstein, D. Hinz, A. Kirchner, A. Yan, K.-H. Müller, L. Schultz: Nanocrystalline high performance magnets, J. Magn. Magn. Mat. 242–245, 1277–1283 (2002)CrossRefGoogle Scholar
  41. 41.
    W. Rave and K. Ramstöck: Micromagnetic calculation of the grain size dependence of remanence and coercivity in nanocrystalline permanent magnets, J. Magn. Magn. Mat. 171, 69–82 (1997)CrossRefGoogle Scholar
  42. 42.
    R. Coehoorn, D.B. de Mooij, J.P.W.B. Duchateau, K.H.J. Buschow: Novel permanent magnetic materials made by rapid quenching. J. de Phys. (Colloque) 49, C8-669–670 (1989)Google Scholar
  43. 43.
    T. Schrefl and J. Fidler: Finite element modeling of nano-composite magnets. IEEE Trans. Magn. 35, 3223 (1999)CrossRefGoogle Scholar
  44. 44.
    J.N. Chapman, S. Young, H.A. Davies, P. Zhang, A. Manaf, R.A. Buckley: A TEM investigation of the magnetic domain structure in nanocrystalline NdFeB samples. Proc. 13th Int. Workshop on RE Magnets and their applications, p. 95, Birmingham (1994)Google Scholar
  45. 45.
    E.A. Nesbitt, H.J. Williams: Mechanism of magnetization in Alnico V. Phys. Rev. 80, 112–113 (1950)Google Scholar
  46. 46.
    L. Folks, R. Street, R.C. Woodward: Domain structures of die-upset melt-spun NdFeB. Appl. Phys. Lett. 65, 910–912 (1994)CrossRefGoogle Scholar
  47. 47.
    K. Khlopkov, O. Gutfleisch, R. Schäfer, D. Hinz, K.-H. Müller, L. Schultz: Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation. J. Magn. Magn. Mat. 272–276, E1937–E1939 (2004)CrossRefGoogle Scholar
  48. 48.
    O. Gutfleisch, K.-H. Müller, K. Khlopkov, M. Wolf, A. Yan, R. Schäfer, T. Gemming, L. Schultz: Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17 type permanent magnets, Acta Mat. 54, 997–1008 (2006)CrossRefGoogle Scholar
  49. 49.
    K. Khlopkov, O. Gutfleisch, D. Hinz, K.-H. Müller, L. Schultz: Evolution of interaction domains in textured fine-grained Nd2Fe14B magnets. J. Appl. Phys. 102, 023912, (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Leibniz Institute for Solid State and Materials Research (IFW Dresden), Institute for Metallic MaterialsDresdenGermany

Personalised recommendations