Advertisement

Spin Dynamics: Fast Switching of Macro-spins

  • X. R. Wang
  • Z. Z. Sun
  • J. Lu
Chapter

Abstract

Recent progress on the theoretical studies of fast magnetization reversal of Stoner particles is reviewed. The following results are discussed: (1) The Stoner–Wohlfarth (SW) limit becomes exact when the damping constant is infinitely large. Under the limit, magnetization moves along the steepest energy descent path. (2) For a given magnetic anisotropy, there is a critical damping constant, above which the minimal switching field is the same as that of the SW-limit. (3) The field of a ballistic magnetization reversal should be along a certain direction window in the presence of energy dissipation. (4) Since a time-dependent magnetic field can be an energy source, two new reversal strategies are possible. One is to use a field following magnetization motion, and the other is to use a circularly polarized microwave near the ferromagnetic resonance frequency. The critical switching fields of both strategies are substantially lower than that of precessional reversal for realistic materials. (5) The theoretical limits for both field-induced and current-induced magnetization reversal are presented for uniaxial Stoner particles.

Keywords

Magnetic Anisotropy Target State Magnetization Reversal Easy Axis Spin Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by UGC, Hong Kong, through RGC CERG grants #603007, 603106, 603508, and RPC07/08.SC03. We would also like to thank APS for granting us permission to use some materials in our early publications in APS journals.

References

  1. 1.
    W. W. Paudler, Nuclear magnetic resonance: general concepts and applications, (Wiley, New York, 1987).Google Scholar
  2. 2.
    R. Kitamaru, Nuclear magnetic resonance: principles and theory, (Elsevier, Amsterdam/New York, 1990).Google Scholar
  3. 3.
    M. H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, (John Wiley & Sons, New York, 2001).Google Scholar
  4. 4.
    B. Hillebrands and K. Ounadjela, eds., Spin Dynamics in Confined Magnetic Structures I & II, (Springer-Verlag, Berlin, 2001); B. Hillebrands and A. Thiaville, eds., Spin Dynamics in Confined Magnetic Structures III, (Springer-Verlag, Berlin, 2006).Google Scholar
  5. 5.
    R. C. O’handley, Modern Magnetic Materials: Principles and Applications, (John Wiley & Sons, New York, 2000).Google Scholar
  6. 6.
    Y. Hou, S. H. Sun, C. Rong, J. P. Liu, Appl. Phys. Lett. 91, 153117 (2007); Y. I. Wang, Y. Li, C. Rong, and J. P. Liu, Nanotechnology 18, 465701 (2007); Y. Hou, Z. Xu, S. Peng, C. Rong, J. P. Liu, and S. Su, Adv. Mater. 19, 3349 (2007).CrossRefGoogle Scholar
  7. 7.
    S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).CrossRefGoogle Scholar
  8. 8.
    C. T. Black, C. B. Murray, R. L. Sandstrom, and S. H. Sun, Science 290, 1131 (2000).CrossRefGoogle Scholar
  9. 9.
    S. I. Woods, J. R. Kirtley, S. H. Sun, and R. H. Koch, Phys. Rev. Lett. 87, 137205 (2001).CrossRefGoogle Scholar
  10. 10.
    D. Zitoun, M. Respaud, M.-C. Fromen, M. J. Casanove, P. Lecante, C. Amiens, and B. Chaudret, Phys. Rev. Lett. 89, 037203 (2002).CrossRefGoogle Scholar
  11. 11.
    E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc. London A240, 599 (1948), reprinted in IEEE Trans. Magn. 27, 3475 (1991).Google Scholar
  12. 12.
    L. He, W. D. Doyle, and H. Fujiwara, IEEE. Trans. Magn. 30, 4086 (1994); L. He and W. D. Doyle, J. Appl. Phys. 79, 6489 (1996).CrossRefGoogle Scholar
  13. 13.
    W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, Phys. Rev. Lett. 79, 1134 (1997).CrossRefGoogle Scholar
  14. 14.
    C. H. Back, D. Weller, J. Heidmann, D. Mauri, D. Guarisco, E. L. Garwin, and H. C. Siegmann, Phys. Rev. Lett. 81, 3251 (1998); C. H. Back, R. Allenspach, W. Weber, S. S. P. Parkin, D. Weller, E. L. Garwin, and H. C. Siegmann, Science 285, 864 (1999). Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, Science 290, 492 (2000).CrossRefGoogle Scholar
  15. 15.
    H. W. Schumacher, C. Chappert, P. Crozat, R. C. Sousa, P. P. Freitas, J. Miltat, J. Fassbender, and B. Hillebrands, Phys. Rev. Lett. 90, 017201 (2003).CrossRefGoogle Scholar
  16. 16.
    T. M. Crawford, T. J. Silva, C. W. Teplin, and C. T. Rogers, Appl. Phys. lett. 74, 3386 (1999).CrossRefGoogle Scholar
  17. 17.
    M. Bauer, J. Fassbender, B. Hillebrands, and R. L. Stamps, Phys. Rev. B 61, 3410 (2000).CrossRefGoogle Scholar
  18. 18.
    Y. Acremann, C. H. Back, M. Buess, D. Pescia, and V. Pokrovsky, Appl. Phys. Lett. 79, 2228 (2001).CrossRefGoogle Scholar
  19. 19.
    J. Miltat, G. Albuquerque, and A. Thiaville, in Spin Dynamics in Confined Magnetic Structures I, edited by B. Hillebrands and K. Ounadjela (Springer-Verlag, Berlin, 2001).Google Scholar
  20. 20.
    D. G. Porter, IEEE. Trans. Magn. 34, 1663 (1998).CrossRefGoogle Scholar
  21. 21.
    Z. Z. Sun, and X. R. Wang, Phys. Rev. B 71, 174430 (2005); 73, 092416 (2006); 74, 132401 (2006); Phys. Rev. Lett. 97, 077205 (2006).CrossRefGoogle Scholar
  22. 22.
    D. Xiao, M. Tsoi, and Q. Niu, J. Appl. Phys. 99, 013903 (2006).CrossRefGoogle Scholar
  23. 23.
    J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); L. Berger, Phys. Rev. B 54, 9353 (1996).CrossRefGoogle Scholar
  24. 24.
    J. Z. Sun, Phys. Rev. B 62, 570 (2000); Z. Li and S. Zhang, ibid. 68, 024404 (2003); Y. B. Bazaliy, B. A. Jones, and S. C. Zhang, ibid. 57, R3213 (1998); 69, 094421 (2004).CrossRefGoogle Scholar
  25. 25.
    A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, Phys. Rev. Lett. 84, 2481 (2000); X. Waintal, E. B. Myers, P. W. Brouwer, and D. C. Ralph, Phys. Rev. B 62, 12317 (2000); M. D. Stiles and A. Zangwill, ibid. 66, 014407 (2002).CrossRefGoogle Scholar
  26. 26.
    M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998); E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867 (1999); J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, Phys. Rev. Lett. 84, 3149 (2000).CrossRefGoogle Scholar
  27. 27.
    Z. Li and S. Zhang, Phys. Rev. B 69, 134416 (2004); W. Wetzels, G. E. W. Bauer, and O. N. Jouravlev, Phys. Rev. Lett. 96, 127203 (2006).CrossRefGoogle Scholar
  28. 28.
    J. Sun, J. Magn. Magn. Mater. 202, 157 (1999); Nature 425, 359 (2003); K. J. Lee, O. Redon, and B. Dieny, Appl. Phys. Lett. 86, 022505 (2005); J. Manschot, A. Brataas, and G. E. W. Bauer, ibid. 85, 3250 (2004); A. D. Kent, B. Ozyilmaz, and E. del Barco, ibid. 84, 3897 (2004).CrossRefGoogle Scholar
  29. 29.
    X. R. Wang and Z. Z. Sun, Phys. Rev. Lett. 98, 077201 (2007).CrossRefGoogle Scholar
  30. 30.
    M. Vomir, L. H. F. Andrade, L. Guidoni, E. Beaurepaire, and J.-Y. Bigot, Phys. Rev. Lett. 94, 237601 (2005).CrossRefGoogle Scholar
  31. 31.
    S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. B 69, 235206 (2004).CrossRefGoogle Scholar
  32. 32.
    S. Zhang and Z. Yang, Phys. Rev. Lett. 94, 066602 (2005).CrossRefGoogle Scholar
  33. 33.
    J. Shi, P. Zhang, D. Xiao, and Q. Niu, Phys. Rev. Lett. 96, 076604 (2006).CrossRefGoogle Scholar
  34. 34.
    X. R. Wang, Y. S. Zheng, and S. Yin, Phys. Rev. B 72, R121303 (2005).CrossRefGoogle Scholar
  35. 35.
    L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1953).Google Scholar
  36. 36.
    T. L. Gilbert, Phys. Rev. 100, 1243 (1955).Google Scholar
  37. 37.
    R. Kikuchi, J. Appl. Phys. 27, 1352 (1956).CrossRefGoogle Scholar
  38. 38.
    Textbooks on nonlinear physics, such as, S. H. Strogatz, Nonlinear Dynamics and Chaos, (Addison-Wesley, 1994).Google Scholar
  39. 39.
    Z. Z. Sun, H. T. He, J. N. Wang, S. D. Wang, and X. R. Wang, Phys. Rev. B 69, 045315 (2004); X. R. Wang, J. N. Wang, B. Q. Sun, and D. S. Jiang, Phys. Rev. B 61, 7261 (2000); X. R.Wang and Q. Niu, Phys. Rev. B. 59, R12755 (1999).CrossRefGoogle Scholar
  40. 40.
    P. R. Gillette and K. Oshima, J. Appl. Phys. 29, 529 (1958).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Physics DepartmentThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations