Skip to main content

High-Temperature Polymer Electrolyte Fuel Cells: Durability Insights

  • Chapter
Polymer Electrolyte Fuel Cell Durability

Abstract

BASF Fuel Cell (formerly PEMEAS) produces polybenzimidazole-based high-temperature membrane electrode assemblies (MEAs). These Celtec®-P MEAs operate at temperatures between 120 and 180°C, and, therefore, are especially suitable for use in reformed-hydrogen-based polymer electrolyte fuel cells. Owing to these high operating temperatures, CO tolerances up to 3% can be achieved. Additional fuel gas impurities (inorganic or organic) can be tolerated to a much higher concentration than in low-temperature fuel cells. From a fuel cell system perspective, waste heat can be effectively used which increases the overall system efficiency. However, besides the distinct advantages over low-temperature polymer electrolyte fuel cells, some challenges have to be overcome. Especially on the catalyst level, there are several requirements which have to be met. In detail these are (1) anode catalyst activity for the oxidation of CO in the presence of hydrogen, (2) cathode catalyst activity in the presence of an adsorbing electrolyte such as phosphoric acid, and (3) high corrosion stability of the catalyst metal and catalyst support, especially under transient operation conditions such as start/stop or local fuel starvation. Especially the last point is important since for successful commercialization of MEAs, durability, reliability, and robustness are critical factors. That is, all materials used in MEAs have to be highly durable even under nonideal daily life conditions outside the laboratory. This contribution gives insight into the degradation mechanism during start/stop operation. Several tests are presented giving a better understanding of corrosion effects in high-temperature MEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J. N., Sifer, N., and Bostic, E. (2006) The XX25: A 25-watt portable fuel cell for soldier power. Proceedings of the 42nd Power Sources Conference, Philadelphia, pp. 403–406.

    Google Scholar 

  • Antonucci, P. L., Romeo, F., Minutoli, M., Alderucci, E., and Giordano, N. (1988) Electrochemical corrosion behavior of carbon black on phosphoric acID. Carbon 26(2), 197–203.

    Article  CAS  Google Scholar 

  • Bekkedahl, T. A., Bregoli, L. J., Breault, R. D., Dykeman, E. A., Meyers, J. P., Patterson, T. W., Skiba, T., Vargas, C., Yang, D., and Yi, J. S. (2005) Reducing Fuel Cell Cathode Potential During Startup and Shutdown. US Patent 6913845.

    Google Scholar 

  • Breault, R. D. (2003) Stack materials and stack design. In: Vielstich, W., Lamm, A., and Gasteiger, H. A. (Eds.), Handbook of Fuel Cells. From Fundamentals, Technology and Applications. Part 3, Wiley, New York, NY, pp. 797–810.

    Google Scholar 

  • Condit, D. A. and Breault, R. D. (2003) Shut-Down Procedure for Hydrogen-Air Fuel Cell System. US Patent 6635370

    Google Scholar 

  • CRC Handbook of Chemistry and Physics (1995), LIDe, D. R. (Ed.), 76th Edition, CRC, Boca Raton, FL.

    Google Scholar 

  • Gasteiger, H. A., Gu, W., Makharia, M., Mathias, M. F., and Sompalli, B. (2003) Beginning of life MEA performance – Efficiency loss contributions. In: Vielstich, W., Gasteiger, H. A., and Lamm, A. (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications. Volume 3: Fuel Cell Technology and Applications, Part 1, Wiley, New York, NY, pp. 593–610.

    Google Scholar 

  • Japanese Industrial Standard (2003) Accelerated Life Test Methods for Phosphoric AcID Fuel Cell. Japanese Industrial Standard JIS C 8802:2003.

    Google Scholar 

  • Kangasniemi, K. H., Condit, D. H., and Jarvi, T. D. (2004) Characterization of vulcan electro-chemically oxIDized under simulated PEM fuel cell conditions. Journal of the Electrochemical Society 151(4), E125–E132.

    Article  CAS  Google Scholar 

  • Kinoshita, K. (1988) Carbon. Electrochemical and Physicochemical Properties, Wiley, New York, NY

    Google Scholar 

  • Kinoshita, K. (1992) Electrochemical Oxygen Technology, Wiley, New York, NY.

    Google Scholar 

  • Kreuer, K. D., Paddison, S. J., Spohr, E., and Schuster, M. (2004) Transport in proton conductors for fuel cell applications: Simulations, elementary reactions, and phenomenology. Chemical Reviews 104, 4678.

    Article  Google Scholar 

  • Kunz, H. R. and Gruver, G. A. (1975) The catalytic activity of platinum supported on carbon for electrochemical oxygen reduction in phosphoric acID. Journal of the Electrochemical Society 122(10), 1279–1287.

    Article  CAS  Google Scholar 

  • Li, Q., He, R., Berg, R. W., Hjuler, H. A., and Bjerrum, N. J. (2004a) Water uptake and acID doping of polybenzimIDazoles as electrolyte membranes for fuel cells. SolID State Ionics 168, 177–185.

    Article  CAS  Google Scholar 

  • Li, Q., He, R., Jensen, J. O., and Bjerrum, N. J. (2004b) PBI-based polymer membranes for high temperature fuel cells – Preparation, characterization and fuel cell demonstration. Fuel Cells 4(3), 147–159.

    Article  CAS  Google Scholar 

  • Mader, J., Xiao, L., SchmIDt, T. J., and Benicewicz, B. (2008) Polymer-acID blends as high-temperature membranes. In: Scherer, G. G. (Ed.), Advances in Polymer Science, Springer, New York, NY.

    Google Scholar 

  • Makharia, R., Kocha, S. S., Yu, P. T., Sweikart, M. A., Gu, W., Wagner, F. T, and Gasteiger, H. A. (2006) PEM fuel cells electrode materials: Requirements and benchmarking technologies. ECS Transactions 1(8), 3–18.

    Article  CAS  Google Scholar 

  • Neyerlin, K. C., Gasteiger, H. A., Mittelstaedt, C. K., Jorne, J., and Gu, W. (2005) Effect of relative humIDity on oxygen reduction kinetics in a PEMFC. Journal of the Electrochemical Society 152(6), A1073–A1080.

    Article  CAS  Google Scholar 

  • Patterson, T. W. and Darling, R. M. (2006) Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation. Electrochemical and SolID-State Letters 9(4), A183–A185.

    Article  CAS  Google Scholar 

  • Perry, M. L., Newman, J., and Cairns, E. J. (1998) Mass transport in gas diffusion electrodes: A diagnostic tool for fuel cell cathodes. Journal of the Electrochemical Society 145(1), 5–15.

    Article  CAS  Google Scholar 

  • Perry, M. L., Patterson, T. W., and Reiser, C. A. (2006) System strategies to mitigate carbon corrosion in fuel cells. ECS Transactions 3(1), 783–795.

    Article  CAS  Google Scholar 

  • Reiser, C. A., Bregoli, L. J., Patterson, T. W., Yi, J. S., Yang, J. D., Perry, M. L., and Jarvi, T. D. (2005) A reverse-current decay mechanism for fuel cells. Electrochemical and SolID-State Letters 8(6), A273–A276.

    Article  CAS  Google Scholar 

  • Roen, L. M., Paik, C. H., and Jarvi, T. D. (2004) Electrocatalytic corrosion of carbon support in PEMFC cathode. Electrochemical and SolID-State Letters 7(1), A19–A22.

    Article  CAS  Google Scholar 

  • Ross Jr., P. N. (1987) Deactivation and poisoning of fuel cell catalysts. In: Petersen, E. E. and Bell, A. T. (Eds.), Catalyst Deactivation, Marcel Dekker, New York, NY, pp. 167–187.

    Google Scholar 

  • Savinell, R., Yeager, E., Tryk, D., Landau, U., Wainright, J., Weng, D., Lux, K., Litt, M., and Rogers, C. (1994) A polymer electrolyte for operation at temperatures up to 200°C. Journal of the Electrochemical Society 141(4), L46–L48.

    Article  CAS  Google Scholar 

  • SchmIDt, T. J. (2006a) Durability and degradation in high-temperature polymer electrolyte fuel cells. ECS Transactions 1(8), 19–31.

    Article  CAS  Google Scholar 

  • SchmIDt, T. J. (2006b) Durability and reliability in high-temperature reformed hydrogen PEFCs. ECS Transactions 3(1) 861–869.

    Article  CAS  Google Scholar 

  • SchmIDt, T. J. and Baurmeister, J. (2008) Properties of high temperature PEFC Celtec P1000 MEAs in start/stop operation mode. Journal of Power Sources 176, 428–434.

    Article  CAS  Google Scholar 

  • Stonehart, P. (1984) Carbon substrates for phosphoric acID fuel cell cathodes. Carbon 22(4/5), 423–431.

    Article  CAS  Google Scholar 

  • Stonehart, P. (1992) Development of alloy electrocatalysts for phosphoric acID fuel cells (PAFC). Journal of Applied Electrochemistry 22, 995–1001.

    Article  CAS  Google Scholar 

  • Tada, T. (2003) High dispersion catalysts including novel carbon supports. In: Vielstich, W., Gasteiger, H. A., and Lamm, A. (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications. Volume 3: Fuel Cell Technology and Applications, Part 1, Wiley, New York, NY, pp. 481–488.

    Google Scholar 

  • Tang, H., Qi, Z., Ramani, M., and Elter, J. F. (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. Journal of Power Sources 158, 1306–1312.

    Article  CAS  Google Scholar 

  • Vogel, H. and Marvel, C. S. (1961) PolybenzimIDazole, new thermally stable polymers. Journal of Polymer Science 50, 511–539.

    Article  CAS  Google Scholar 

  • Wainright, J. S., Litt, M. H., and Savinell, R. F. (2003) High-temperature membranes. In: Vielstich, W., Lamm, A., and Gasteiger, H. A. (Eds.), Handbook of Fuel Cells. Fundamentals, Technology and Applications. Volume 3, Wiley, New York, NY, pp. 436–446.

    Google Scholar 

  • Wang, J.-T., Savinell, R. F., Wainright, J., Litt, M., and Yu, H. (1996a) A H2/O2 fuel cell using acID doped polybenzimIDazole as polymer electrolyte. Electrochimica Acta 41(2), 193–197.

    Article  CAS  Google Scholar 

  • Wang, J.-T., Wainright, J. S., Savinell, R. F., and Litt, M. (1996b) A direct methanol fuel cell using acID-doped polybenzimIDazole as polymer electrolyte. Journal of Applied Electrochemistry 26, 751–756.

    CAS  Google Scholar 

  • Wang, J.-T., Wasmus, S., and Savinell, R. F. (1996c) Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. Journal of the Electrochemical Society 143(4), 1233–1239.

    Article  CAS  Google Scholar 

  • Xiao, L., Zhang, H., Scanlon, E., Chen, R., Choe, E.-W., Ramanathan, L. S., Yu, S., and Benicewicz, B. (2005a) Synthesis and characterization of pyrIDine-based polybenzimIDazoles for high-temperature polymer electrolyte fuel cell applications. Fuel Cells 5(2), 287–295.

    Article  CAS  Google Scholar 

  • Xiao, L., Zhang, H., Scanlon, E., Ramanathan, L. S., Choe, E.-W., Rogers, D., Apple, T., and Benicewicz, B. (2005b) High-temperature polybenzimIDazole fuel cell membranes via a sol-gel process. Chemical Materials 17, 5328–5333.

    Article  CAS  Google Scholar 

  • Yu, P. T., Gu, W., Makharia, M., Wagner, F. T, and Gasteiger, H. A. (2006) The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Transactions 3(1), 797–809.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, T.J. (2009). High-Temperature Polymer Electrolyte Fuel Cells: Durability Insights. In: Büchi, F.N., Inaba, M., Schmidt, T.J. (eds) Polymer Electrolyte Fuel Cell Durability. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85536-3_9

Download citation

Publish with us

Policies and ethics