Durability Aspects of Gas-Diffusion and Microporous Layers

  • David L. WoodIII
  • Rodney L. Borup


The polymer electrolyte fuel cell (PEFC) gas-diffusion layer (GDL) is the critical bridging component between the bipolar plate flow-field and elec-trocatalyst layer. It must participate in all mass-transport processes of a PEFC. These consist primarily of reactant transport and liquid-water handling – either excess water removal to prevent catalyst-layer flooding under humidified conditions or suppression of water removal to prevent membrane dehydration under subsaturated conditions. Other requirements of a GDL include electron collection and transport, and sharing stack compression load with the cell gaskets. To achieve this broad range of functions, state-of-the-art GDLs consist of a complex, porous composite network of graphite fibers, carbon particles, and hydrophobic fluoropolymer. They are manufactured via a series of intricate processing steps, all of which can affect the final properties of the GDL, and may contain several discrete layers in the final form. The most popular configuration is a bilayer structure with the macroporous substrate facing the flow field and a microporous layer (MPL) facing the catalyst layer. All properties of the GDL must be preserved within the PEFC operating environment to ensure required stack lifetimes and power densities. This chapter discusses GDL substrate processing variables, hydrophobic posttreatments, MPL addition, and material selection in the context of their affects on long-term PEFC performance, i.e., loss of hydrophobicity, loss of MPL material, carbon corrosion, increase in mass-transport resistance, etc. Advanced physical property characterization methods are shown and are related to durability data. Finally, considerations for improving GDL durability and extending membrane lifetime under dry operating conditions through novel GDL designs are discussed.


Contact Angle Oxygen Reduction Reaction Membrane Electrode Assembly Bipolar Plate Equilibrium Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atanassova, P. (2008) Cabot Corporation, Private communication.Google Scholar
  2. Bazylak, A., Sinton, D., Liu, Z.-S. and Djilali, N. (2007) Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. J. Power Sources 163, 784–792.CrossRefGoogle Scholar
  3. Bluemle, M.J., Gurau, V., Mann, J.A. Jr., Zawodzinski, T.A. Jr., De Castro, E.S. and Tsou, Y.-M. (2004)Characterization of transport properties in gas diffusion layers for PEMFCs. Presented at the 2004 Electrochemical Society Joint International Meeting, Honolulu, HI, Abstract No. 1932, October 3–8, 2004.Google Scholar
  4. Borup, R., Wood, D., Davey, J., Welch, P. and Garzon, F. (2006a) PEM fuel cell durability. Presented at the 2006 DOE Hydrogen Program Annual Merit Review, Arlington, Virginia, May 16–19, 2006.Google Scholar
  5. Borup, R.L., Davey, J.R., Garzon, F.H., Wood, D.L., Welch, P.M. and More, K. (2006b) PEM fuel cell durability with transportation transient operation. ECS Trans. 3 (1), 879–886.CrossRefGoogle Scholar
  6. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Garland, N., Myers, D., Mukundan, R., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y. and Yasuda, K. (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951.CrossRefGoogle Scholar
  7. Cassie, A.B.D. (1948) Contact angles. Trans. Faraday Soc. 44 (3), 11–16.Google Scholar
  8. Cleghorn, S.J.C., Mayfield, D.K., Moore, D.A., Moore, J.C., Rusch, G., Sherman, T.W., Sisofo, N.T. and Beuscher, U. (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J. Power Sources 158, 446–454.CrossRefGoogle Scholar
  9. Cubaud, T. and Fermigier, M. (2004) Advancing contact lines on chemically patterned surfaces. J. Colloid Interface Sci. 269, 171–177.CrossRefGoogle Scholar
  10. Dawe, H.J. and Stevens, R.F. (1960) Proceedings of the fourth conference on carbon. Pergamon Press, New York, p. 17.Google Scholar
  11. Dohle, H., Jung, R., Kimiaie, N., Mergel, J. and Müller, M. (2003) Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells – experiments and simulation studies. J. Power Sources 124, 371–384.CrossRefGoogle Scholar
  12. Eckl, R., Grinzinger, R. and Lehnert, W. (2006) Current distribution mapping in polymer electrolyte fuel cells – a finite element analysis of measurement uncertainty imposed by lateral currents. J. Power Sources 154, 171–179.CrossRefGoogle Scholar
  13. Fleming, G. (2000) Spectracorp, Inc., Private communication.Google Scholar
  14. Gasteiger, H.A., Gu, W., Makharia, R., Mathias, M.F., and Sompalli, B. (2003) Beginning-of life MEA performance–efficiency loss contributions. In: W. Vielstich, A. Lamm and H.A. Gasteiger (Eds.), Handbook of Fuel Cells: Fundamentals, Technology, and Applications. Vol. 3, Part 1, Wiley, New York, N Y, pp. 593–610.Google Scholar
  15. Good, R.J. and Girifalco, L.A. (1960) Estimation of surface energy of solids from contact angle data. J. Phys. Chem. 64, 561–565.CrossRefGoogle Scholar
  16. Gupta, K. and Jena, A. (2003) Techniques for pore structure characterization of fuel cell components containing hydrophobic and hydrophilic pores. Presented at the 2003 Fuel Cell Seminar, Miami Beach, FL, Abstract pp. 723–726, November 3–7, 2003.Google Scholar
  17. Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, M., Gasteiger, H. and Abbott, J. (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5, 302–308.CrossRefGoogle Scholar
  18. Hwang, J.J. (2006) Thermal-electrochemical modeling of a proton exchange membrane fuel cell. J. Electrochem. Soc. 153, A216–A224.CrossRefGoogle Scholar
  19. Ihonen, J., Mikkola, M. and Lindbergh, G. (2004) Flooding of gas diffusion backing in PEFCs. J. Electrochem. Soc. 151, A1152–A1161.CrossRefGoogle Scholar
  20. Jena, A.K. and Gupta, K.M. (1999) In-plane compression porometry of battery separators. J. Power Sources 80, 46–52.CrossRefGoogle Scholar
  21. Jena, A.K. and Gupta, K.M. (2002a) Characterization of pore structure of filtration media containing hydrophobic and hydrophilic pores. Fluid/Part. Sep. J. 14, 1–6.Google Scholar
  22. Jena, A.K. and Gupta, K.M. (2002b) Analyse der porendurchmesser von mehrschichtfiltermitteln. Filtrieren und Separieren 16, 13.Google Scholar
  23. Jordan, L.R., Shukla, A.K., Behrsing, T., Avery, N.R., Muddle, B.C. and Forsyth, M. (2000) Diffusion layer parameters influencing optimal fuel cell performance. J. Power Sources 86, 250–254.CrossRefGoogle Scholar
  24. Kinoshita, K. (1988) Carbon – Electrochemical and Physicochemical Properties. Wiley, New York, N Y.Google Scholar
  25. Kolde, J., Lane, D. and Mongan, J. (2002) Addressing the needs of the PEM fuel cell market through innovation. Presented at the 202nd Meeting of The Electrochemical Society, Salt Lake City, UT, Abstract No. 802, October 20–24, 2002.Google Scholar
  26. LaConti, A.B., Hamdan, M. and McDonald, R.C. (2003) Mechanisms of membrane degradation for PEMFCs. In: W. Vielstich, A. Lamm and H.A. Gasteiger (Eds.), Handbook of Fuel Cells: Fundamentals, Technology, and Applications. Vol. 3, Part 1, Wiley, New York, NY, pp. 647–662.Google Scholar
  27. Liu, W., Moore, D. and Murthy, M. (2004) Using AC impedance to characterize gas diffusion media in PEM fuel cells. Presented at the 2004 Electrochemical Society Joint International Meeting, Honolulu, HI, Abstract No. 1930, October 3–8, 2004.Google Scholar
  28. Mändle, M. and Wilde, P., SGL Carbon Group, SGL TECHNOLOGIES GmbH, Private communication, 2001.Google Scholar
  29. Markel, T. (2004) National Renewable Energy Laboratory, Private communication.Google Scholar
  30. Mathias, M.F., Roth, J., Fleming, J. and Lehnert, W. (2003) Diffusion media materials and characterization. In: W. Vielstich, A. Lamm and H.A. Gasteiger (Eds.), Handbook of Fuel Cells: Fundamentals, Technology, and Applications. Vol. 3, Part 1, Wiley, New York, NY, pp. 517–537.Google Scholar
  31. Meyers, J.P. and Darling, R.M. (2006) Model of carbon corrosion in PEM fuel cells. J. Electrochem. Soc. 153, A1432–A1442.CrossRefGoogle Scholar
  32. Mueller, B., Zawodzinski, T., Bauman, J., Uribe, F., Gottesfeld, S., De Castro, E. and De Marinis, M. (1999) Title. In: S. Gottesfeld and T.F. Fuller (Eds.), Proton Conducting Membrane Fuel Cells II. PV 98–27, The Electrochemical Society Proceedings Series, Pennington, NJ, pp. 1–9.Google Scholar
  33. Nitta, I. (2008) Inhomogeneous compression of PEMFC gas diffusion layers. PhD Dissertation, Helsinki University of Technology, Espoo, FinlandGoogle Scholar
  34. Owejan, J.E., Yu, P.T. and Makharia, R. (2007) Mitigation of carbon corrosion in microporous layers in PEM fuel cells. ECS Trans. 11, 1049–1057.CrossRefGoogle Scholar
  35. Owens, D.K. and Wendt, R.C. (1969) Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747.CrossRefGoogle Scholar
  36. Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M.L. and Jarvi, T.D. (2005) A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett. 8, A273–A276.CrossRefGoogle Scholar
  37. Roth, J. and Wood, D.L. (1999) General Motors Corporation, Unpublished Data.Google Scholar
  38. Rulison, C. (2007) Augustine Scientific, LLC, Unpublished Data.Google Scholar
  39. Stanic, V. and Hoberecht, V. (2004) MEA failure mechanisms in PEM fuel cells operated on hydrogen and oxygen. 2004 Fuel Cell Seminar Abstracts, San Antonio, Texas, November 1–5, pp. 85–88.Google Scholar
  40. Wagner, F. (2008) General Motors Corporation, Private communication.Google Scholar
  41. Weber, A.Z. and Newman, J. (2005) Effects of microporous layers in polymer electrolyte fuel cells. J. Electrochem. Soc. 152, A677–A688.CrossRefGoogle Scholar
  42. Williams, M.V., Begg, E., Bonville, L., Kunz, H.R. and Fenton, J.M. (2004) Characterization of gas diffusion layers for PEMFC. J. Electrochem. Soc. 151, A1173–A1180.CrossRefGoogle Scholar
  43. Wood, D.L. (2007) Fundamental material degradation studies during long-term operation of hydrogen/air PEMFCs. PhD Dissertation, University of New Mexico, Albuquerque, NM.Google Scholar
  44. Wood, D.L. and Lehnert, W.K. (2000) General Motors Corporation, Unpublished Data.Google Scholar
  45. Wood, D.L., Grot, S.A. and Fly, G. (2002a) Composite gas distribution structure for fuel cell. US Patent No. 6,350,539, General Motors Corporation.Google Scholar
  46. Wood, D.L., Wilde, P.M., Mändle, M. and Murata, M. (2002b) Correlation of gas diffusion layer physical properties and PEMFC performance. 2002 Fuel Cell Seminar Abstracts, pp. 41–44.Google Scholar
  47. Wood, D., Davey, J., Garzon, F., Atanassov, P. and Borup, R. (2004a) Effects of long-term PEMFC operation on gas diffusion layer and membrane electrode assembly physical properties. Presented at the 206th Meeting of The Electrochemical Society, Honolulu, HI, Abstract No. 1881, October 3–8, 2004.Google Scholar
  48. Wood, D.L., Xie, J., Pacheco, S.D., Davey, J.R., Borup, R.L., Garzon, F.H. and Atanassov, P. (2004b) Durability issues of the PEMFC GDL & MEA under steady-state and drive-cycle operating conditions. Presented at the 2004 Fuel Cell Seminar, San Antonio, TX, Abstract No. 24, November 1–5, 2004.Google Scholar
  49. Wood, D., Davey, J., Garzon, F., Atanassov, P. and Borup, R. (2005) Characterization of gas diffusion layers and membrane electrode assemblies for long-term operation. Presented at the 208th Meeting of The Electrochemical Society, Los Angeles, CA, Abstract No. 1010, October 16–21, 2005.Google Scholar
  50. Wood, D., Davey, J., Atanassov, P. and Borup, R. (2006) PEMFC component characterization and its relationship to mass-transport overpotentials during long-term testing. ECS Trans. 3 (1), 753–763.CrossRefGoogle Scholar
  51. Zisman, W.A. (1964) Relation of equilibrium contact angle to liquid and solid constitution. ACS Adv. Chem. 43, 1–51.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David L. WoodIII
    • 1
    • 2
  • Rodney L. Borup
    • 1
    • 2
  1. 1.Materials Physics and ApplicationsUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations