Durability of Radiation-Grafted Fuel Cell Membranes

  • Lorenz Gubler
  • Günther G. Scherer


Partially fluorinated proton exchange membranes prepared via radiation-induced graft copolymerization (“radiation grafting”) offer the prospect of cost-effective and tailor-made membranes for the polymer electrolyte fuel cell. The composition and structure of radiation-grafted membranes can be adjusted in a broad range to balance the different requirements of proton transport and mechanical robustness. Styrene, which is readily sulfonated, is predominantly used as grafting monomer. Crosslinking of the structure is a key design parameter, which, if optimized, yields membranes with durability of several thousand hours. Nevertheless, there is potential for improving chemical durability through the use of advanced styrene-derived grafting monomers, such as α-methylstyrene, with enhanced stability against radical attack. Post mortem investigations of aged membranes yield important insights into the extent of degradation, in particular locally resolved analysis on the scale of flow field channels and lands. An asset of crosslinked radiation-grafted membranes is their dimensional stability between dry and wet states, which is a key parameter in the context of the mechanical functionality as a separator in the cell. Yet still, the understanding of chemically and mechanically induced degradation, in particular their interplay, is limited, and meaningful accelerated aging test methods have started to be implemented to yield detailed understanding of prevailing degradation mechanisms.


Fuel Cell Polymer Electrolyte Open Circuit Voltage Membrane Electrode Assembly Polymer Electrolyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assink, R.A., Arnold, C. and Hollandsworth, R.P. (1991) Preparation of oxidatively stable cationexchange membranes by the elimination of tertiary hydrogen. J. Membr. Sci. 56, 143–151.CrossRefGoogle Scholar
  2. Becker, W. and Schmidt-Naake, G. (2001) Properties of polymer exchange membranes from irradiation introduced graft polymerization. Chem. Eng. Technol. 24, 1128–1132.CrossRefGoogle Scholar
  3. Ben youcef, H., Alkan Gürsel, S., Wokaun, A. and Scherer, G.G. (2008) The influence of crosslinker on the properties of radiation-grafted films and membranes based on ETFE. J. Membr. Sci. 311, 208–215.CrossRefGoogle Scholar
  4. Chen, J., Asano, M., Maekawa, Y. and Yoshida, M. (2005) Suitability of some fluoropolymers used as base films for preparation of polymer electrolyte fuel cell membranes. J. Membr. Sci. 277, 249–257.CrossRefGoogle Scholar
  5. Chen, J., Asano, M., Yamaki, T. and Yoshida, M. (2006a) Effect of crosslinkers on the preparation and properties of ETFE-based radiation-grafted polymer electrolyte membranes. J. Appl. Polym. Sci. 100, 4565–4574.CrossRefGoogle Scholar
  6. Chen, J., Asano, M., Yamaki, T. and Yoshida, M. (2006b) Improvement of chemical stability of polymer electrolyte fuel cell membranes by grafting of new substituted styrene monomers into ETFE films. J. Mater. Sci. 41, 1289–1292.CrossRefGoogle Scholar
  7. Chen, J., Asano, M., Yamaki, T. and Yoshida, M. (2006c) Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films. J. Membr. Sci. 269, 194–204.CrossRefGoogle Scholar
  8. Chuy, C., Basura, V.I., Simon, E., Holdcroft, S., Horsfall, J. and Lovell, K.V. (2000) Electrochemical characterization of ethylenetetrafluoroethylene-g-polystyrenesulfonic acid solid polymer electrolytes. J. Electrochem. Soc. 147, 4453–4458.CrossRefGoogle Scholar
  9. Freunberger, S.A., Reum, M., Evertz, J., Wokaun, A. and Büchi, F.N. (2006) Measuring the current distribution in PEFCs with sub-millimeter resolution. J. Electrochem. Soc. 153, A2158–A2165.CrossRefGoogle Scholar
  10. Gubler, L. and Scherer, G.G. (2006) Fuel cell durability of the radiation grafted PSI membrane under high H2/O2 pressure and dynamic operating conditions. PSI Electrochemistry Laboratory – Annual Report 2006, 19.Google Scholar
  11. Gubler, L., Gürsel, S.A., Hajbolouri, F., Kramer, D., Beck, N., Reiner, A., Steiger, B., Scherer, G.G., Wokaun, A., Rajesh, B. and Thampi, K.R. (2004a) Materials for polymer electrolyte fuel cells. Chimia 58, 826–836.CrossRefGoogle Scholar
  12. Gubler, L., Kuhn, H., Schmidt, T.J., Scherer, G.G., Brack, H.P. and Simbeck, K. (2004b) Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes. Fuel Cells 4, 196–207.CrossRefGoogle Scholar
  13. Gubler, L., Gürsel, S.A. and Scherer, G.G. (2005a) Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 5, 317–335.CrossRefGoogle Scholar
  14. Gubler, L., Gürsel, S.A., Slaski, M., Geiger, F., Scherer, G.G. and Wokaun, A. (2005b) Radiationgrafted fuel cell membranes: Current state of the art at PSI. Proceedings of Third European PEFC Forum, July 17–22, Lucerne, Switzerland, p. 111.Google Scholar
  15. Gubler, L., Prost, N., Alkan Gürsel, S. and Scherer, G.G. (2005c) Proton exchange membranes prepared by radiation grafting of styrene/divinylbenzene onto poly(ethylene-Alt-tetrafluoroethylene) for low temperature fuel cells. Solid State Ionics 176, 2849–2860.CrossRefGoogle Scholar
  16. Gubler, L., Slaski, M. and Scherer, G.G. (2005d) A method for preparing a radiation grafted fuel cell membrane with enhanced chemical stability and a membrane electrode assembly, Patent Application WO2006084591, Paul Scherrer Institut, Switzerland.Google Scholar
  17. Gubler, L., Müller, R. and Scherer, G.G. (2006a) Local degradation analysis of an aged fuel cell membrane. PSI Electrochemistry Laboratory – Annual Report 2006, 20.Google Scholar
  18. Gubler, L., Slaski, M., Wokaun, A. and Scherer, G.G. (2006b) Advanced monomer combinations for radiation grafted fuel cell membranes. Electrochem. Commun. 8, 1215–1219.CrossRefGoogle Scholar
  19. Gubler, L., Ben youcef, H., Alkan Gürsel, S., Wokaun, A. and Scherer, G.G. (2007a) Crosslinker effect on fuel cell performance characteristics of ETFE based radiation grafted membranes. Electrochem. Soc. Trans. 11, 27–34.Google Scholar
  20. Gubler, L., Ben youcef, H., Alkan Gürsel, S., Wokaun, A. and Scherer, G.G. (2008) Crosslinker Effect in ETFE Based Radiation Grafted Proton Conducting Membranes. I. Properties and Fuel Cell Performance Characteristics. J. Electrochem. Soc. 155, B921–B928.CrossRefGoogle Scholar
  21. Gupta, B. and Scherer, G.G. (1994) Proton exchange membranes by radiation-induced graft copolymerization of monomers into Teflon-FEP films. Chimia 48, 127–137.Google Scholar
  22. Gürsel, S.A., Yang, Z., Choudhury, B., Roelofs, M.G. and Scherer, G.G. (2006) Radiation grafted membranes using a trifluorostyrene derivative. J. Electrochem. Soc. 153, A1964–A1970.CrossRefGoogle Scholar
  23. Hickner, M.A., Ghassemi, H., Kim, Y.S., Einsla, B.R. and McGrath, J.E. (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612.CrossRefGoogle Scholar
  24. Hietala, S., Maunu, S.L., Sundholm, F., Lehtinen, T. and Sundholm, G. (1999) Water sorption and diffusion coefficients of protons and water in PVDF-g-PSSA polymer electrolyte membranes. J. Polym. Sci. Part B: Polym. Phys. 37, 2893–2900.CrossRefGoogle Scholar
  25. Hodgdon, R.B., Boyack, J.R. and LaConti, A.B. (1966) The Degradation of Polystyrene Sulfonic Acid. TIS Report 65DE 5, General Electric Company, USA.Google Scholar
  26. Hübner, G. and Roduner, E. (1999) EPR investigations of HO' radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J. Mater. Chem. 9, 409–418.CrossRefGoogle Scholar
  27. LaConti, A.B., Hamdan, H. and McDonald, R.C. (2003) Mechanisms of membrane degradation. In: W. Vielstich, H. A. Gasteiger and A. Lamm (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications. Wiley, Chichester, pp. 647–662.Google Scholar
  28. Li, L., Muto, F., Miura, T., Oshima, A., Washio, M., Ikeda, S., Iida, M., Tabata, Y., Matsuura, C. and Katsumura, Y (2006) Improving the properties of the proton exchange membranes by introducing α-methylstyrene in the pre-irradiation induced graft polymerization. Eur. Polym. J., 1222–1228.Google Scholar
  29. Liu, W and Zuckerbrod, D. (2005) In situ detection of hydrogen peroxide in PEM fuel cells. J. Electrochem. Soc. 152, A1165–A1170.CrossRefGoogle Scholar
  30. Liu, W, Ruth, K. and Rush, G. (2001) Membrane durability in PEM fuel cells. J. New Mater. Electrochem. Syst. 4, 227–231.Google Scholar
  31. Mathias, M.F., Makharia, R., Gasteiger, H.A., Conley, J.H., Fuller, T.J., Gittleman, C.J., Kocha, S.S., Miller, D.P, Mittelstaedt, C.K., Xie, T., Yan, S.G. and Yu, P.T. (2005) Two fuel cell cars in every garage ? Electrochem. Soc. Interface 3, 24–35.Google Scholar
  32. Meyer, G., Perrot, C, Gebel, G., Gonon, L., Morlat, S. and Gardette, J.-L. (2006) Ex situ hydrolytic degradation of sulfonated polyimide membranes for fuel cells. Polymer 47, 5003–5011.CrossRefGoogle Scholar
  33. Mittal, V.O., Kunz, H.R. and Fenton, J.M. (2006) Membrane degradation mechanisms in PEMFCs. Electrochem. Soc. Trans. 3, 507–517.Google Scholar
  34. Panchenko, A., Dilger, H., Möller, E., Sixt, T. and Roduner, E. (2004) In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications. J. Power Sources 127, 325–330.CrossRefGoogle Scholar
  35. Rager, T. (2003) Pre-irradiation grafting of styrene/divinylbenzene onto poly(tetrafluoroethyleneco-hexafluoropropylene) from non-solvents. Helv. Chim. Acta 86, 1966–1980.CrossRefGoogle Scholar
  36. Santis, M., Freunberger, S.A., Papra, M., Wokaun, A. and Büchi, F.N. (2006) Experimental investigation of coupling phenomena in polymer electrolyte fuel cell stacks. J. Power Sources 161, 1076–1083.CrossRefGoogle Scholar
  37. Scherer, G.G. (1990) Polymer membranes for fuel cells. Ber. Bunsenges. Phys. Chem. 94, 1008–1014.Google Scholar
  38. Schmidt, T.J., Simbeck, K. and Scherer, G.G. (2005) Influence of cross-linking on the performance of radiation grafted and sulfonated FEP 25 membranes in H2-O2 PEFC. J. Electrochem. Soc. 152, A93–A97.CrossRefGoogle Scholar
  39. Taniguchi, T, Morimoto, T. and Kawakado, M. (2001) High Temperature Proton Conductive Electrolyte Membrane. Patent JP2001213987A2, Toyota Central Research & Development Laboratory, Inc., Japan.Google Scholar
  40. Yamaki, T, Tsukada, J., Asano, M., Katakai, R. and Yoshida, M. (2007) Preparation of highly stable ion exchange membranes by radiation-induced graft copolymerization of styrene and bis(vinyl phenyl)ethane into crosslinked polytetrafluoroethylene films. J. Fuel Cell Sci. Technol. 4, 56–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lorenz Gubler
    • 1
  • Günther G. Scherer
    • 1
  1. 1.Electrochemistry LaboratoryPaul Scherrer InstitutVilligen PSISwitzerland

Personalised recommendations