Advertisement

Chemical Degradation: Correlations Between Electrolyzer and Fuel Cell Findings

  • Han Liu
  • Frank D. Coms
  • Jingxin Zhang
  • Hubert A. Gasteiger
  • Anthony B. LaConti

Abstract

Membrane chemical degradation of polymer electrolyte membrane fuel cells (PEMFCs) is summarized in this paper. Effects of experimental parameters, such as external load, relative humidity, temperature, and reactant gas partial pressure, are reviewed. Other factors, including membrane thickness, catalyst type, and cation contamination, are summarized. Localized degradations, including anode versus cathode, ionomer inside the catalyst layer, degradation along the Pt precipitation line, gas inlets, and edges are discussed individually. Various characterization techniques employed for membrane chemical degradation, Fourier transform IR, Raman, energy-dispersive X-ray, NMR, and X-ray photoelectron spectroscopy are described and the characterization results are also briefly discussed. The detailed discussion on mechanisms of membrane degradation is divided into three categories: hydrocarbon, grafted polystyrene sulfonic acid, and perfluorinated sulfonic acid. Specific discussion on the radical generation pathway, and the relationship between Fenton's test and actual fuel cell testing is also presented. A comparison is made between PEMFCs and polymer electrolyte water electrolyzers, with the emphasis on fuel cells.

Keywords

Fuel Cell Polymer Electrolyte Catalyst Layer Chemical Degradation Polymer Electrolyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aieta, N.V., Leisch, J.E., Santos, M.M., Yandrasits, M.A., Hamrock, S.J., Herring, A.M. (2007) Tracking crystallinity changes in PFSA polymers during ex-situ peroxide degradation. ECS Trans. 11, 1157–1164.Google Scholar
  2. Antoine, O., Durand, R. (2000) RRDE study of oxygen reduction on Pt nanoparticles inside Nafion (R): H2O2 production in PEMFC cathode conditions. J. Appl. Electrochem. 30, 839–844.Google Scholar
  3. Aoki, M., Uchida, H., Watanabe, M. (2005) Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochem. Commun. 7, 1434–1438.Google Scholar
  4. Aoki, M., Asano, N., Miyatake, K., Uchida, H., Watanabe, M. (2006a) Durability of sulfonated poly-imide membrane evaluated by long-term polymer electrolyte fuel cell operation. J. Electrochem. Soc. 153, A1154–A1158.Google Scholar
  5. Aoki, M., Chikashige, Y., Miyatake, K., Uchida, H., Watanabe, M. (2006b) Durability of novel sulfonated poly(arylene ether) membrane in PEFC operation. Electrochem. Commun. 8, 1412–1416.Google Scholar
  6. Aoki, M., Uchida, H., Watanabe, M. (2006c) Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochem. Commun. 8, 1509–1513.Google Scholar
  7. Asano, N., Aoki, M., Suzuki, S., Miyatake, K., Uchida, H., Watanabe, M. (2006) Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc. 128, 1762–1769.Google Scholar
  8. Assink, R.A., Arnold, C., Hollandsworth, R.P. (1991) Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens. J. Membr. Sci. 56, 143–151.Google Scholar
  9. Autrey, T., Brown, A.K., Camaioni, D.M., Dupuis, M., Foster, N.S., Getty, A. (2004) Thermochemistry of aqueous hydroxyl radical from advances in photoacoustic calorimetry and ab initio continuum solvation theory. J. Am. Chem. Soc. 126, 3680–3681.Google Scholar
  10. Baldwin, R., Pham, M., Leonida, A., McElroy, J., Nalette, T. (1990) Hydrogen oxygen proton-exchange membrane fuel-cells and electrolyzers. J. Power Sources 29, 399–412.Google Scholar
  11. Bosnjakovic, A., Schlick, S. (2004) Naflon perfluorinated membranes treated in Fenton media: Radical species detected by ESR spectroscopy. J. Phys. Chem. 108, 4332–4337.Google Scholar
  12. Büchi, F.N., Gupta, B., Haas, O., Scherer, G.G. (1995) Study of radiation-grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel-cells. Electrochim. Acta 40, 345–353.Google Scholar
  13. Burlatsky, S.F., Atrazhev, V. , Cipollini, N.E., Condit, D.A., Erikhman, N. (2005) Aspects of PEMFC degradation. ECS Trans. 1, 239–246.Google Scholar
  14. Chen, C., Fuller, T.F. (2007) H2O2 Formation under fuel-cell conditions. ECS Trans. 11, 1127–1137.Google Scholar
  15. Chen, Y.L., Li, D.Z., Wang, X.C., Wu, L., Wang, X.X., Fu, X.Z. (2005) Promoting effects of H-2 on photooxidation of volatile organic pollutants over Pt/TiO2. New J. Chem. 29, 1514–1519.Google Scholar
  16. Chen, C., Levitin, G., Hess, D.W., Fuller, T.F. (2007a) XPS investigation of Nafion (R) membrane degradation. J. Power Sources 169, 288–295.Google Scholar
  17. Chen, J., Septiani, U., Asano, M., Maekawa, Y. , Kubota, H., Yoshida, M. (2007b) Comparative study on the preparation and properties of radiation-grafted polymer electrolyte membranes based on fluoropolymer films. J. Appl. Polym. Sci. 103, 1966–1972.Google Scholar
  18. Chludzinski, P.J. (1982) A Mechanistic Model and Proposed Corrections for Solid Polymer Electrolyte (SPE) Degradation in H2/O2 Fuel Cells and Water Electrolyzers, GE Direct Energy Conversion Program Internal Report, 1982.Google Scholar
  19. Cipollini, N.E. (2007) Chemical aspects of membrane degradation. ECS Trans. 11, 1071–1082.Google Scholar
  20. Cleghorn, S.J.C., Mayfield, D.K., Moore, D.A., Moore, J.C., Rusch, G., Sherman, T.W., Sisofo, N.T., Beuscher, U. (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J. Power Sources 158, 446–454.Google Scholar
  21. Curtin, D.E., Lousenberg, R.D., Henry, T.J., Tangeman, P.C., Tisack, M.E. (2004) Advanced materials for improved PEMFC performance and life. J. Power Sources 131, 41–48.Google Scholar
  22. Da Pozza, A., Ferrantelli, P., Merli, C., Petrucci, E. (2005) Oxidation efficiency in the electro-Fenton process. J. Appl. Electrochem. 35, 391–398.Google Scholar
  23. Darling, R.M., Meyers, J.P. (2005) Mathematical model of platinum movement in PEM fuel cells. J. Electrochem. Soc. 152, A242–A247.Google Scholar
  24. Delaney, W.E., Liu, W.K. (2007) The use of FTIR to analyze ex-situ and in-situ degradation of perfluorinated fuel cell ionomer. ECS Trans. 11, 1093–1104.Google Scholar
  25. Endoh, E. (2006) Highly durable MEA for PEMFC under high temperature and low humidity conditions. ECS Trans. 3, 9–18.Google Scholar
  26. Endoh, E., Hommura, S., Terazono, S., Widjaja, H., Anzai, J. (2007) Degradation mechanism of the PFSA membrane and influence of deposited Pt in the membrane. ECS Trans. 11, 1083–1091.Google Scholar
  27. Escobedo, G., Enabling commercial PEM fuel cells with breakthrough lifetime improvements. Department of Energy Hydrogen Program Annual Merit Review Proceedings, 2006.Google Scholar
  28. Ferreira, P.J., la O, G.J., Shao-Horn, Y. , Morgan, D., Makharia, R., Kocha, S., Gasteiger, H.A. (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – A mechanistic investigation. J. Electrochem. Soc. 152, A2256–A2271.Google Scholar
  29. Fuller, T.F., Newman, J. (1993) Water and thermal management in solid-polymer-electrolyte fuel-cells. J. Electrochem. Soc. 140, 1218–1225.Google Scholar
  30. Genies, C., Mercier, R., Sillion, B., Petiaud, R., Cornet, N., Gebel, G., Pineri, M. (2001) Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 42, 5097–5105.Google Scholar
  31. Gubler, L., Kuhn, H., Schmidt, T.J., Scherer, G.G., Brack, H.P., Simbeck, K. (2004) Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes. Fuel Cells 4, 196–207.Google Scholar
  32. Gubler, L., Gursel, S.A., Scherer, G.G. (2005) Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 5, 317–335.Google Scholar
  33. Gulzow, E., Schulze, M., Wagner, N., Kaz, T., Reissner, R., Steinhilber, G., Schneider, A. (2000) Dry layer preparation and characterisation of polymer electrolyte fuel cell components. J. Power Sources 86, 352–362.Google Scholar
  34. Guo, Q.H., Pintauro, P.N., Tang, H., O'Connor, S. (1999) Sulfonated and crosslinked polyphosp-hazene-based proton-exchange membranes. J. Membr. Sci. 154, 175–181.Google Scholar
  35. Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, A., Gasteiger, H., Abbott, J. (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5, 302–308.Google Scholar
  36. Hickner, M.A., Ghassemi, H., Kim, Y.S., Einsla, B.R., McGrath, J.E. (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4611.Google Scholar
  37. Hicks, M., MEA & stack durability for pem fuel cells. Department of Energy Hydrogen Program Annual Merit Review Proceedings, 2006.Google Scholar
  38. Hodgdon, R.B., Boyack, J.R., LaConti, A.B. (1966) The Degradation of Polystyrene Sulfonic Acid, TIS Report 65DE5, General Electric Company: July 6, 1966.Google Scholar
  39. Hommura, S., Kawahara, K., Shimohira, T., Teraoka, Y. (2008) Development of a method for clarifying the perfluorosulfonated membrane degradation mechanism in a fuel cell environment. J. Electrochem. Soc. 155, A29–A33.Google Scholar
  40. Huang, C.D., Tan, K.S., Lin, H.Y., Tan, K.L. (2003) XRD and XPS analysis of the degradation of the polymer electrolyte in H-2-O-2 fuel cell. Chem. Phys. Lett. 371, 80–85.Google Scholar
  41. Hubner, G., Roduner, E. (1999) EPR investigation of HO. Radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J. Mater. Chem. 9, 409–418.Google Scholar
  42. Inaba, M., Yamada, H., Tokunaga, J., Tasaka, A. (2004) Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation. Electrochem. Solid State Lett. 7, A474–A476.Google Scholar
  43. Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., Ogumi, Z. (2006) Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 51, 5746–5753.Google Scholar
  44. Kadirov, M.K., Bosnjakovic, A., Schlick, S. (2005) Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated Nafion and Dow ionomers: Effect of counterions and H2O2. J. Phys. Chem. 109, 7664–7670.Google Scholar
  45. Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., Iriyama, Y. , Abe, T., Ogumi, Z. (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources 158, 1222–1228.Google Scholar
  46. Knights, S.D., Colbow, K.M., St-Pierre, J., Wilkinson, D.P. (2004) Aging mechanisms and lifetime of PEFC and DMFC. J. Power Sources 127, 127–134.Google Scholar
  47. LaConti, A.B., McDonald, D.I., Austin, J.F. (1968) Technical Memo, 68–2, General Electric Company.Google Scholar
  48. LaConti, A.B. (1988) Hydrogen and oxygen fuel cell development. The MIT/Marine Industry Collegium, Power Systems for Small Underwater Vehicles, Cambridge, MA.Google Scholar
  49. LaConti, A.B., Fragala, A.R., Boyack, J.R. Proceedings of the Symposium on Electrode Materials and process for Energy Conversion and Storage, The Electrochemical Society, Los Angels, CA, 1977, p. 354.Google Scholar
  50. LaConti, A.B., Hamdan, M., McDonald, R.C. (2003) Mechanisms of membrane degradation for PEMFCs. In: Vielstich, W., Lamn, A., Gasteiger, H.A. (Eds.), Handbook of Fuel Cells –Fundamentals, Technology and Applications, Wiley, New York, NY, vol. 3, p. 647.Google Scholar
  51. LaConti, A.B., Liu, H., Mittelsteadt, C., McDonald, R.C. (2005) Polymer electrolyte membrane degradation mechanisms in fuel cells – Findings over the past 30 years and comparison with electrolyzers. ECS Trans. 1, 199–219.Google Scholar
  52. Liu, W., Zuckerbrod, D. (2005) In situ detection of hydrogen peroxide in PEM fuel cells. J. Electrochem. Soc. 152, A1165–A1170.Google Scholar
  53. Liu, W., Ruth, K., Rusch, G. (2001) Membrane durability in PEM fuel cells. J. New Mater. Electrochem. Syst. 4, 227–232.Google Scholar
  54. Liu, J.G., Zhou, Z.H., Zhao, X.X., Xin, Q., Sun, G.Q., Yi, B.L. (2004) Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. PCCP 6, 134–137.Google Scholar
  55. Liu, H., Gasteiger, H.A., LaConti, A.B., Zhang, J. (2005) Factors impacting chemical degradation of perfluorinated sulfonic acid ionomers. ECS Trans. 1, 283–293.Google Scholar
  56. Liu, H., Zhang, J., Coms, F., Gu, W., Gasteiger, H.A. (2006) Impact of gas partial pressure on PEMFC chemical degradation. ECS Trans. 3, 493–505.Google Scholar
  57. Luo, Z., Li, D., Tang, H., Pan, M., Ruan, R. (2006) Degradation behavior of membrane-electrode-assembly materials in 10-cell PEMFC stack. Int. J. Hydrogen Energy 31, 1831–1837.Google Scholar
  58. Makharia, R., Mathias, M.F., Baker, D.R. (2005) Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. J. Electrochem. Soc. 152, A970–A977.Google Scholar
  59. Mathias, M.F., Makharia, R., Gasteiger, H.A., Conley, J.J., Fuller, T.J., Gittleman, C.J., Kocha, S.S., Miller, D.P., Mittelsteadt, C.K., Xie, T., Yan, S.G., Yu, P.T. (2005) Two Fuel Cell Cars In Every Garage? Electrochem. Soc. Interface 14, 24–35.Google Scholar
  60. Matic, H., Lundblad, A., Lindbergh, G., Jacobsson, P. (2005) In situ micro-Raman on the membrane in a working PEM cell. Electrochem. Solid State Lett. 8, A5–A7.Google Scholar
  61. Mattsson, B., Ericson, H., Torell, L.M., Sundholm, F. (2000) Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy. Electrochim. Acta 45, 1405–1408.Google Scholar
  62. Mitov, S., Panchenko, A., Roduner, E. (2005) Comparative DFT study of non-fluorinated and perfluorinated alkyl and alkyl-peroxy radicals. Chem. Phys. Lett. 402, 485–490.Google Scholar
  63. Mitov, S., Delmer, O., Kerres, J., Roduner, E. (2006a) Oxidative and photochemical stability of ionomers for fuel-cell membranes. Helv. Chim. Acta 89, 2354–2370.Google Scholar
  64. Mitov, S., Hubner, G., Brack, H.P., Scherer, G.G., Roduner, E. (2006b) In situ electron spin resonance study of styrene grafting of electron irradiated fluoropolymer films for fuel cell membranes. J. Polym. Sci. Part B Polym. Phys. 44, 3323–3336.Google Scholar
  65. Mittal, V.O., Kunz, H.R., Fenton, J.M. (2006a) Effect of catalyst properties on membrane degradation rate and the underlying degradation mechanism in PEMFCs. J. Electrochem. Soc. 153, A1755–A1759.Google Scholar
  66. Mittal, V.O., Kunz, H.R., Fenton, J.M. (2006b) Is H2O2 involved in the membrane degradation mechanism in PEMFC? Electrochem. Solid State Lett. 9, A299–A302.Google Scholar
  67. Mittal, V.O., Kunz, H.R., Fenton, J.M. (2006c) Membrane degradation mechanisms in PEMFCs. ECS Trans. 3, 507–517.Google Scholar
  68. Mittal, V.O., Kunz, H.R., Fenton, J.M. (2007) Membrane degradation mechanisms in PEMFCs. J. Electrochem. Soc. 154, B652–B656.Google Scholar
  69. Miyake, N., Wakizoe, M., Honda, E., Ohta, T., High durability of Asahi kasei aciplex membrane. Abstracts of 208th Meeting of the Electrochemical Society, Los Angels, CA, 2005.Google Scholar
  70. Miyatake, K., Watanabe, M. (2006) Emerging membrane materials for high temperature polymer electrolyte fuel cells: Durable hydrocarbon ionomers. J. Mater. Chem. 16, 4465–4467.Google Scholar
  71. Mo, Y.B., Scherson, D.A. (2003) Platinum-based electrocatalysts for generation of hydrogen peroxide in aqueous acidic electrolytes – Rotating ring-disk studies. J. Electrochem. Soc. 150, E39–E46.Google Scholar
  72. Multi-Year Research, Development and Demonstration Plan: Planned program activities for 2004–2015. United States Department of Energy, 2007.Google Scholar
  73. Murthi, V.S., Urian, R.C., Mukerjee, S. (2004) Oxygen reduction kinetics in low and medium temperature acid environment: Correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J. Phys. Chem. 108, 11011–11023.Google Scholar
  74. Nakano, T., Nagaoka, S., Kawakami, H. (2005) Preparation of novel sulfonated block copolyimides for proton conductivity membranes. Polym. Adv. Technol. 16, 753–757.Google Scholar
  75. Nasef, M.M., Saidi, H. (2002) Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelecton spectroscopy. J. New Mater. Electrochem. Syst. 5, 183–189.Google Scholar
  76. Ogumi, Z., Takehara, Z., Yoshizawa, S. (1984) Gas permeation in SPE Method.1. Oxygen permeation through Nafion and neosepta. J. Electrochem. Soc. 131, 769–773.Google Scholar
  77. Ogumi, Z., Kuroe, T., Takehara, Z. (1985) Gas permeation in SPE Method 2. Oxygen and hydrogen permeation through Nafion. J. Electrochem. Soc. 132, 2601–2605.Google Scholar
  78. Ohma, A., Suga, S., Yamamoto, S., Shinohara, K. (2006) Phenomenon analysis of PEFC for automotive use(1) membrane degradation behavior during OCV hold test. ECS Trans. 3, 519–529.Google Scholar
  79. Ohma, A., Suga, S., Yamamoto, S., Shinohara, K. (2007a) Membrane degradation behavior during open-circuit voltage hold test. J. Electrochem. Soc. 154, B757–B760.Google Scholar
  80. Ohma, A., Yamamoto, S., Shinohara, K. (2007b) Analysis of membrane degradation behavior during OCV hold test. ECS Trans. 11, 1181–1192.Google Scholar
  81. Okada, T., Dale, J., Ayato, Y. , Asbjornsen, O.A., Yuasa, M., Sekine, I. (1999) Unprecedented effect of impurity cations on the oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer. Langmuir 15, 8490–8496.Google Scholar
  82. Okada, T., Satou, H., Yuasa, M. (2003) Effects of additives on oxygen reduction kinetics at the interface between platinum and perfluorinated ionomer. Langmuir 19, 2325–2332.Google Scholar
  83. Panchenko, A., Dilger, H., Moller, E., Sixt, T., Roduner, E. (2004) In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications. J. Power Sources 127, 325–330.Google Scholar
  84. Panchenko, A. (2006) DFT investigation of the polymer electrolyte membrane degradation caused by OH radicals in fuel cells. J. Membr. Sci. 278, 269–278.Google Scholar
  85. Paulus, U.A., Wokaun, A., Scherer, G.G., Schmidt, T.J., Stamenkovic, V. , Markovic, N.M., Ross, P.N. (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 47, 3787–3798.Google Scholar
  86. Pianca, M., Barchiesi, E., Esposto, G., Radice, S. (1999) End groups in fluoropolymers. J. Fluorine Chem. 95, 71–84.Google Scholar
  87. Pozio, A., Silva, R.F., De Francesco, M., Giorgi, L. (2003) Nafion degradation in PEFCs from end plate iron contamination. Electrochim. Acta 48, 1543–1549.Google Scholar
  88. Preli, F., Progress in improving durability of pem fuel cells for stationary and transportation applications. Fourth International Fuel Cell Workshop 2005, Yamanashi, Japan, 2005.Google Scholar
  89. Qiao, J.L., Saito, M., Hayamizu, K., Okada, T. (2006) Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J. Electrochem. Soc. 153, A967–A974.Google Scholar
  90. Roeselova, M., Vieceli, J., Dang, L.X., Garrett, B.C., Tobias, D.J. (2004) Hydroxyl radical at the air–water interface. J. Am. Chem. Soc. 126, 16308–16309.Google Scholar
  91. Scherer, G.G. (1990) Polymer membranes for fuel-cells. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 94, 1008–1014.Google Scholar
  92. Schiraldi, D.A. (2006) Perfluorinated polymer electrolyte membrane durability. Polym. Rev. 46, 315–327.Google Scholar
  93. Schmidt, T.J., Paulus, U.A., Gasteiger, H.A., Behm, R.J. (2001) The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J. Electroanal. Chem. 508, 41–47.Google Scholar
  94. Shim, J.Y., Tsushima, S., Hirai, S. (2007) Preferential thinning behaviors of the anode-side of the PEM under durability test. ECS Trans. 11, 1151–1156.Google Scholar
  95. Smitha, B., Sridhar, S., Khan, A.A. (2005) Solid polymer electrolyte membranes for fuel cell applications – a review. J. Membr. Sci. 259, 10–26.Google Scholar
  96. Sompalli, B., Litteer, B.A., Gu, W., Gasteiger, H.A. (2007) Membrane degradation at catalyst layer edges in PEMFC MEAs. J. Electrochem. Soc. 154, B1349–B1357.Google Scholar
  97. Springer, T.E., Zawodzinski, T.A., Gottesfeld, S. (1991) Polymer electrolyte fuel-cell model. J. Electrochem. Soc. 138, 2334–2342.Google Scholar
  98. St Pierre, J., Wilkinson, D.P., Knights, S., Bos, M.L. (2000) Relationships between water management, contamination and lifetime degradation in PEFC. J. New Mater. Electrochem. Syst. 3, 99–106.Google Scholar
  99. Stamenkovic, V., Markovic, N.M., Ross, P.N. (2001) Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 500, 44–51.Google Scholar
  100. Stucki, S., Scherer, G.G., Schlagowski, S., Fischer, E. (1998) PEM water electrolysers: Evidence for membrane failure in 100 kW demonstration plants. J. Appl. Electrochem. 28, 1041–1049.Google Scholar
  101. Takeshita, T., Miura, F., Morimoto, Y., Abstract 1511. Abstracts of 207th Electrochemical Society Meeting, Quebec City, Quebec, Canada, 2005.Google Scholar
  102. Tanuma, T., Terazono, S. (2006) Improving MEA durability by using a catalyst with a small number of functional groups on its surface. Chem. Lett. 35, 1422–1423.Google Scholar
  103. Vogel, B., Aleksandrova, E., Mitov, S., Krafft, M., Dreizler, A., Kerres, J., Hein, M., Roduner, E. (2007) Observation of fuel cell membrane degradation by ex-situ and in-situ electron paramagnetic resonance. ECS Trans. 11, 1105–1114.Google Scholar
  104. Wang, H., Capuano, G.A. (1998) Behavior of Raipore radiation-grafted polymer membranes in H-2/O-2 fuel cells. J. Electrochem. Soc. 145, 780–784.Google Scholar
  105. Weir, N.A. (1978) Reactions of hydroxyl radicals with polystyrene. Eur. Polym. J. 14, 9–14.Google Scholar
  106. Wilkie, C.A., Thomsen, J.R., Mittleman, M.L. (1991) Interaction of poly (methyl-methacrylate) and Nafions. J. Appl. Polym. Sci. 42, 901–909.Google Scholar
  107. Xie, J., Wood, D.L., Wayne, D.M., Zawodzinski, T.A., Atanassov, P., Borup, R.L. (2005) Durability of PEFCs at high humidity conditions. J. Electrochem. Soc. 152, A104–A113.Google Scholar
  108. Yokoyama, T., Matsumoto, Y., Meshitsuka, G. (2002) Enhancement of the reaction between pulp components and hydroxyl radical produced by the decomposition of hydrogen peroxide under alkaline conditions. J. Wood Sci. 48, 191–196.Google Scholar
  109. Yoshioka, S., Yoshimura, A., Fukumoto, H., Hiroi, O., Yoshiyasu, H. (2005) Development of a PEFC under low humidified conditions. J. Power Sources 144, 146–151.Google Scholar
  110. Yu, J.R., Yi, B.L., Xing, D.M., Liu, F.Q., Shao, Z.G., Fu, Y.Z. (2003) Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells. PCCP 5, 611–615.Google Scholar
  111. Yu, J.R., Matsuura, T., Yoshikawa, Y. , Islam, M.N., Hori, M. (2005a) In situ analysis of performance degradation of a PEMFC under nonsaturated humidification. Electrochem. Solid State Lett. 8, A156–A158.Google Scholar
  112. Yu, J.R., Matsuura, T., Yoshikawa, Y., Islam, M.N., Hori, M. (2005b) Lifetime behavior of a PEM fuel cell with low humidification of feed stream. PCCP 7, 373–378.Google Scholar
  113. Zhang, L., Mukerjee, S. (2006) Investigation of durability issues of selected nonfluorinated proton exchange membranes for fuel cell application. J. Electrochem. Soc. 153, A1062–A1072.Google Scholar
  114. Zhang, J., Litteer, B.A., Gu, W., Liu, H., Gasteiger, H.A. (2007) Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs. J. Electrochem. Soc. 154, B1006–B1011.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Han Liu
    • 1
  • Frank D. Coms
    • 2
  • Jingxin Zhang
    • 2
  • Hubert A. Gasteiger
    • 2
  • Anthony B. LaConti
    • 1
  1. 1.Giner, Inc., Giner Electrochemical Systems, LLCNewtonUSA
  2. 2.Fuel Cell Activities, General MotorsHoneoye FallsUSA

Personalised recommendations