Skip to main content

Chemical Degradation: Correlations Between Electrolyzer and Fuel Cell Findings

  • Chapter
Polymer Electrolyte Fuel Cell Durability

Abstract

Membrane chemical degradation of polymer electrolyte membrane fuel cells (PEMFCs) is summarized in this paper. Effects of experimental parameters, such as external load, relative humidity, temperature, and reactant gas partial pressure, are reviewed. Other factors, including membrane thickness, catalyst type, and cation contamination, are summarized. Localized degradations, including anode versus cathode, ionomer inside the catalyst layer, degradation along the Pt precipitation line, gas inlets, and edges are discussed individually. Various characterization techniques employed for membrane chemical degradation, Fourier transform IR, Raman, energy-dispersive X-ray, NMR, and X-ray photoelectron spectroscopy are described and the characterization results are also briefly discussed. The detailed discussion on mechanisms of membrane degradation is divided into three categories: hydrocarbon, grafted polystyrene sulfonic acid, and perfluorinated sulfonic acid. Specific discussion on the radical generation pathway, and the relationship between Fenton's test and actual fuel cell testing is also presented. A comparison is made between PEMFCs and polymer electrolyte water electrolyzers, with the emphasis on fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aieta, N.V., Leisch, J.E., Santos, M.M., Yandrasits, M.A., Hamrock, S.J., Herring, A.M. (2007) Tracking crystallinity changes in PFSA polymers during ex-situ peroxide degradation. ECS Trans. 11, 1157–1164.

    CAS  Google Scholar 

  • Antoine, O., Durand, R. (2000) RRDE study of oxygen reduction on Pt nanoparticles inside Nafion (R): H2O2 production in PEMFC cathode conditions. J. Appl. Electrochem. 30, 839–844.

    CAS  Google Scholar 

  • Aoki, M., Uchida, H., Watanabe, M. (2005) Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochem. Commun. 7, 1434–1438.

    CAS  Google Scholar 

  • Aoki, M., Asano, N., Miyatake, K., Uchida, H., Watanabe, M. (2006a) Durability of sulfonated poly-imide membrane evaluated by long-term polymer electrolyte fuel cell operation. J. Electrochem. Soc. 153, A1154–A1158.

    CAS  Google Scholar 

  • Aoki, M., Chikashige, Y., Miyatake, K., Uchida, H., Watanabe, M. (2006b) Durability of novel sulfonated poly(arylene ether) membrane in PEFC operation. Electrochem. Commun. 8, 1412–1416.

    CAS  Google Scholar 

  • Aoki, M., Uchida, H., Watanabe, M. (2006c) Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochem. Commun. 8, 1509–1513.

    CAS  Google Scholar 

  • Asano, N., Aoki, M., Suzuki, S., Miyatake, K., Uchida, H., Watanabe, M. (2006) Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc. 128, 1762–1769.

    CAS  Google Scholar 

  • Assink, R.A., Arnold, C., Hollandsworth, R.P. (1991) Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens. J. Membr. Sci. 56, 143–151.

    CAS  Google Scholar 

  • Autrey, T., Brown, A.K., Camaioni, D.M., Dupuis, M., Foster, N.S., Getty, A. (2004) Thermochemistry of aqueous hydroxyl radical from advances in photoacoustic calorimetry and ab initio continuum solvation theory. J. Am. Chem. Soc. 126, 3680–3681.

    CAS  Google Scholar 

  • Baldwin, R., Pham, M., Leonida, A., McElroy, J., Nalette, T. (1990) Hydrogen oxygen proton-exchange membrane fuel-cells and electrolyzers. J. Power Sources 29, 399–412.

    CAS  Google Scholar 

  • Bosnjakovic, A., Schlick, S. (2004) Naflon perfluorinated membranes treated in Fenton media: Radical species detected by ESR spectroscopy. J. Phys. Chem. 108, 4332–4337.

    CAS  Google Scholar 

  • Büchi, F.N., Gupta, B., Haas, O., Scherer, G.G. (1995) Study of radiation-grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel-cells. Electrochim. Acta 40, 345–353.

    Google Scholar 

  • Burlatsky, S.F., Atrazhev, V. , Cipollini, N.E., Condit, D.A., Erikhman, N. (2005) Aspects of PEMFC degradation. ECS Trans. 1, 239–246.

    Google Scholar 

  • Chen, C., Fuller, T.F. (2007) H2O2 Formation under fuel-cell conditions. ECS Trans. 11, 1127–1137.

    CAS  Google Scholar 

  • Chen, Y.L., Li, D.Z., Wang, X.C., Wu, L., Wang, X.X., Fu, X.Z. (2005) Promoting effects of H-2 on photooxidation of volatile organic pollutants over Pt/TiO2. New J. Chem. 29, 1514–1519.

    CAS  Google Scholar 

  • Chen, C., Levitin, G., Hess, D.W., Fuller, T.F. (2007a) XPS investigation of Nafion (R) membrane degradation. J. Power Sources 169, 288–295.

    CAS  Google Scholar 

  • Chen, J., Septiani, U., Asano, M., Maekawa, Y. , Kubota, H., Yoshida, M. (2007b) Comparative study on the preparation and properties of radiation-grafted polymer electrolyte membranes based on fluoropolymer films. J. Appl. Polym. Sci. 103, 1966–1972.

    CAS  Google Scholar 

  • Chludzinski, P.J. (1982) A Mechanistic Model and Proposed Corrections for Solid Polymer Electrolyte (SPE) Degradation in H2/O2 Fuel Cells and Water Electrolyzers, GE Direct Energy Conversion Program Internal Report, 1982.

    Google Scholar 

  • Cipollini, N.E. (2007) Chemical aspects of membrane degradation. ECS Trans. 11, 1071–1082.

    CAS  Google Scholar 

  • Cleghorn, S.J.C., Mayfield, D.K., Moore, D.A., Moore, J.C., Rusch, G., Sherman, T.W., Sisofo, N.T., Beuscher, U. (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J. Power Sources 158, 446–454.

    CAS  Google Scholar 

  • Curtin, D.E., Lousenberg, R.D., Henry, T.J., Tangeman, P.C., Tisack, M.E. (2004) Advanced materials for improved PEMFC performance and life. J. Power Sources 131, 41–48.

    CAS  Google Scholar 

  • Da Pozza, A., Ferrantelli, P., Merli, C., Petrucci, E. (2005) Oxidation efficiency in the electro-Fenton process. J. Appl. Electrochem. 35, 391–398.

    Google Scholar 

  • Darling, R.M., Meyers, J.P. (2005) Mathematical model of platinum movement in PEM fuel cells. J. Electrochem. Soc. 152, A242–A247.

    CAS  Google Scholar 

  • Delaney, W.E., Liu, W.K. (2007) The use of FTIR to analyze ex-situ and in-situ degradation of perfluorinated fuel cell ionomer. ECS Trans. 11, 1093–1104.

    CAS  Google Scholar 

  • Endoh, E. (2006) Highly durable MEA for PEMFC under high temperature and low humidity conditions. ECS Trans. 3, 9–18.

    CAS  Google Scholar 

  • Endoh, E., Hommura, S., Terazono, S., Widjaja, H., Anzai, J. (2007) Degradation mechanism of the PFSA membrane and influence of deposited Pt in the membrane. ECS Trans. 11, 1083–1091.

    CAS  Google Scholar 

  • Escobedo, G., Enabling commercial PEM fuel cells with breakthrough lifetime improvements. Department of Energy Hydrogen Program Annual Merit Review Proceedings, 2006.

    Google Scholar 

  • Ferreira, P.J., la O, G.J., Shao-Horn, Y. , Morgan, D., Makharia, R., Kocha, S., Gasteiger, H.A. (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – A mechanistic investigation. J. Electrochem. Soc. 152, A2256–A2271.

    Google Scholar 

  • Fuller, T.F., Newman, J. (1993) Water and thermal management in solid-polymer-electrolyte fuel-cells. J. Electrochem. Soc. 140, 1218–1225.

    CAS  Google Scholar 

  • Genies, C., Mercier, R., Sillion, B., Petiaud, R., Cornet, N., Gebel, G., Pineri, M. (2001) Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 42, 5097–5105.

    CAS  Google Scholar 

  • Gubler, L., Kuhn, H., Schmidt, T.J., Scherer, G.G., Brack, H.P., Simbeck, K. (2004) Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes. Fuel Cells 4, 196–207.

    CAS  Google Scholar 

  • Gubler, L., Gursel, S.A., Scherer, G.G. (2005) Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 5, 317–335.

    CAS  Google Scholar 

  • Gulzow, E., Schulze, M., Wagner, N., Kaz, T., Reissner, R., Steinhilber, G., Schneider, A. (2000) Dry layer preparation and characterisation of polymer electrolyte fuel cell components. J. Power Sources 86, 352–362.

    CAS  Google Scholar 

  • Guo, Q.H., Pintauro, P.N., Tang, H., O'Connor, S. (1999) Sulfonated and crosslinked polyphosp-hazene-based proton-exchange membranes. J. Membr. Sci. 154, 175–181.

    CAS  Google Scholar 

  • Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, A., Gasteiger, H., Abbott, J. (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5, 302–308.

    CAS  Google Scholar 

  • Hickner, M.A., Ghassemi, H., Kim, Y.S., Einsla, B.R., McGrath, J.E. (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4611.

    CAS  Google Scholar 

  • Hicks, M., MEA & stack durability for pem fuel cells. Department of Energy Hydrogen Program Annual Merit Review Proceedings, 2006.

    Google Scholar 

  • Hodgdon, R.B., Boyack, J.R., LaConti, A.B. (1966) The Degradation of Polystyrene Sulfonic Acid, TIS Report 65DE5, General Electric Company: July 6, 1966.

    Google Scholar 

  • Hommura, S., Kawahara, K., Shimohira, T., Teraoka, Y. (2008) Development of a method for clarifying the perfluorosulfonated membrane degradation mechanism in a fuel cell environment. J. Electrochem. Soc. 155, A29–A33.

    CAS  Google Scholar 

  • Huang, C.D., Tan, K.S., Lin, H.Y., Tan, K.L. (2003) XRD and XPS analysis of the degradation of the polymer electrolyte in H-2-O-2 fuel cell. Chem. Phys. Lett. 371, 80–85.

    CAS  Google Scholar 

  • Hubner, G., Roduner, E. (1999) EPR investigation of HO. Radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J. Mater. Chem. 9, 409–418.

    CAS  Google Scholar 

  • Inaba, M., Yamada, H., Tokunaga, J., Tasaka, A. (2004) Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation. Electrochem. Solid State Lett. 7, A474–A476.

    CAS  Google Scholar 

  • Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., Ogumi, Z. (2006) Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 51, 5746–5753.

    CAS  Google Scholar 

  • Kadirov, M.K., Bosnjakovic, A., Schlick, S. (2005) Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated Nafion and Dow ionomers: Effect of counterions and H2O2. J. Phys. Chem. 109, 7664–7670.

    CAS  Google Scholar 

  • Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., Iriyama, Y. , Abe, T., Ogumi, Z. (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources 158, 1222–1228.

    CAS  Google Scholar 

  • Knights, S.D., Colbow, K.M., St-Pierre, J., Wilkinson, D.P. (2004) Aging mechanisms and lifetime of PEFC and DMFC. J. Power Sources 127, 127–134.

    CAS  Google Scholar 

  • LaConti, A.B., McDonald, D.I., Austin, J.F. (1968) Technical Memo, 68–2, General Electric Company.

    Google Scholar 

  • LaConti, A.B. (1988) Hydrogen and oxygen fuel cell development. The MIT/Marine Industry Collegium, Power Systems for Small Underwater Vehicles, Cambridge, MA.

    Google Scholar 

  • LaConti, A.B., Fragala, A.R., Boyack, J.R. Proceedings of the Symposium on Electrode Materials and process for Energy Conversion and Storage, The Electrochemical Society, Los Angels, CA, 1977, p. 354.

    Google Scholar 

  • LaConti, A.B., Hamdan, M., McDonald, R.C. (2003) Mechanisms of membrane degradation for PEMFCs. In: Vielstich, W., Lamn, A., Gasteiger, H.A. (Eds.), Handbook of Fuel Cells –Fundamentals, Technology and Applications, Wiley, New York, NY, vol. 3, p. 647.

    Google Scholar 

  • LaConti, A.B., Liu, H., Mittelsteadt, C., McDonald, R.C. (2005) Polymer electrolyte membrane degradation mechanisms in fuel cells – Findings over the past 30 years and comparison with electrolyzers. ECS Trans. 1, 199–219.

    Google Scholar 

  • Liu, W., Zuckerbrod, D. (2005) In situ detection of hydrogen peroxide in PEM fuel cells. J. Electrochem. Soc. 152, A1165–A1170.

    CAS  Google Scholar 

  • Liu, W., Ruth, K., Rusch, G. (2001) Membrane durability in PEM fuel cells. J. New Mater. Electrochem. Syst. 4, 227–232.

    CAS  Google Scholar 

  • Liu, J.G., Zhou, Z.H., Zhao, X.X., Xin, Q., Sun, G.Q., Yi, B.L. (2004) Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. PCCP 6, 134–137.

    CAS  Google Scholar 

  • Liu, H., Gasteiger, H.A., LaConti, A.B., Zhang, J. (2005) Factors impacting chemical degradation of perfluorinated sulfonic acid ionomers. ECS Trans. 1, 283–293.

    Google Scholar 

  • Liu, H., Zhang, J., Coms, F., Gu, W., Gasteiger, H.A. (2006) Impact of gas partial pressure on PEMFC chemical degradation. ECS Trans. 3, 493–505.

    CAS  Google Scholar 

  • Luo, Z., Li, D., Tang, H., Pan, M., Ruan, R. (2006) Degradation behavior of membrane-electrode-assembly materials in 10-cell PEMFC stack. Int. J. Hydrogen Energy 31, 1831–1837.

    CAS  Google Scholar 

  • Makharia, R., Mathias, M.F., Baker, D.R. (2005) Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. J. Electrochem. Soc. 152, A970–A977.

    CAS  Google Scholar 

  • Mathias, M.F., Makharia, R., Gasteiger, H.A., Conley, J.J., Fuller, T.J., Gittleman, C.J., Kocha, S.S., Miller, D.P., Mittelsteadt, C.K., Xie, T., Yan, S.G., Yu, P.T. (2005) Two Fuel Cell Cars In Every Garage? Electrochem. Soc. Interface 14, 24–35.

    CAS  Google Scholar 

  • Matic, H., Lundblad, A., Lindbergh, G., Jacobsson, P. (2005) In situ micro-Raman on the membrane in a working PEM cell. Electrochem. Solid State Lett. 8, A5–A7.

    CAS  Google Scholar 

  • Mattsson, B., Ericson, H., Torell, L.M., Sundholm, F. (2000) Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy. Electrochim. Acta 45, 1405–1408.

    CAS  Google Scholar 

  • Mitov, S., Panchenko, A., Roduner, E. (2005) Comparative DFT study of non-fluorinated and perfluorinated alkyl and alkyl-peroxy radicals. Chem. Phys. Lett. 402, 485–490.

    CAS  Google Scholar 

  • Mitov, S., Delmer, O., Kerres, J., Roduner, E. (2006a) Oxidative and photochemical stability of ionomers for fuel-cell membranes. Helv. Chim. Acta 89, 2354–2370.

    CAS  Google Scholar 

  • Mitov, S., Hubner, G., Brack, H.P., Scherer, G.G., Roduner, E. (2006b) In situ electron spin resonance study of styrene grafting of electron irradiated fluoropolymer films for fuel cell membranes. J. Polym. Sci. Part B Polym. Phys. 44, 3323–3336.

    CAS  Google Scholar 

  • Mittal, V.O., Kunz, H.R., Fenton, J.M. (2006a) Effect of catalyst properties on membrane degradation rate and the underlying degradation mechanism in PEMFCs. J. Electrochem. Soc. 153, A1755–A1759.

    CAS  Google Scholar 

  • Mittal, V.O., Kunz, H.R., Fenton, J.M. (2006b) Is H2O2 involved in the membrane degradation mechanism in PEMFC? Electrochem. Solid State Lett. 9, A299–A302.

    CAS  Google Scholar 

  • Mittal, V.O., Kunz, H.R., Fenton, J.M. (2006c) Membrane degradation mechanisms in PEMFCs. ECS Trans. 3, 507–517.

    CAS  Google Scholar 

  • Mittal, V.O., Kunz, H.R., Fenton, J.M. (2007) Membrane degradation mechanisms in PEMFCs. J. Electrochem. Soc. 154, B652–B656.

    CAS  Google Scholar 

  • Miyake, N., Wakizoe, M., Honda, E., Ohta, T., High durability of Asahi kasei aciplex membrane. Abstracts of 208th Meeting of the Electrochemical Society, Los Angels, CA, 2005.

    Google Scholar 

  • Miyatake, K., Watanabe, M. (2006) Emerging membrane materials for high temperature polymer electrolyte fuel cells: Durable hydrocarbon ionomers. J. Mater. Chem. 16, 4465–4467.

    CAS  Google Scholar 

  • Mo, Y.B., Scherson, D.A. (2003) Platinum-based electrocatalysts for generation of hydrogen peroxide in aqueous acidic electrolytes – Rotating ring-disk studies. J. Electrochem. Soc. 150, E39–E46.

    CAS  Google Scholar 

  • Multi-Year Research, Development and Demonstration Plan: Planned program activities for 2004–2015. United States Department of Energy, 2007.

    Google Scholar 

  • Murthi, V.S., Urian, R.C., Mukerjee, S. (2004) Oxygen reduction kinetics in low and medium temperature acid environment: Correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J. Phys. Chem. 108, 11011–11023.

    CAS  Google Scholar 

  • Nakano, T., Nagaoka, S., Kawakami, H. (2005) Preparation of novel sulfonated block copolyimides for proton conductivity membranes. Polym. Adv. Technol. 16, 753–757.

    CAS  Google Scholar 

  • Nasef, M.M., Saidi, H. (2002) Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelecton spectroscopy. J. New Mater. Electrochem. Syst. 5, 183–189.

    CAS  Google Scholar 

  • Ogumi, Z., Takehara, Z., Yoshizawa, S. (1984) Gas permeation in SPE Method.1. Oxygen permeation through Nafion and neosepta. J. Electrochem. Soc. 131, 769–773.

    CAS  Google Scholar 

  • Ogumi, Z., Kuroe, T., Takehara, Z. (1985) Gas permeation in SPE Method 2. Oxygen and hydrogen permeation through Nafion. J. Electrochem. Soc. 132, 2601–2605.

    CAS  Google Scholar 

  • Ohma, A., Suga, S., Yamamoto, S., Shinohara, K. (2006) Phenomenon analysis of PEFC for automotive use(1) membrane degradation behavior during OCV hold test. ECS Trans. 3, 519–529.

    CAS  Google Scholar 

  • Ohma, A., Suga, S., Yamamoto, S., Shinohara, K. (2007a) Membrane degradation behavior during open-circuit voltage hold test. J. Electrochem. Soc. 154, B757–B760.

    CAS  Google Scholar 

  • Ohma, A., Yamamoto, S., Shinohara, K. (2007b) Analysis of membrane degradation behavior during OCV hold test. ECS Trans. 11, 1181–1192.

    CAS  Google Scholar 

  • Okada, T., Dale, J., Ayato, Y. , Asbjornsen, O.A., Yuasa, M., Sekine, I. (1999) Unprecedented effect of impurity cations on the oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer. Langmuir 15, 8490–8496.

    CAS  Google Scholar 

  • Okada, T., Satou, H., Yuasa, M. (2003) Effects of additives on oxygen reduction kinetics at the interface between platinum and perfluorinated ionomer. Langmuir 19, 2325–2332.

    CAS  Google Scholar 

  • Panchenko, A., Dilger, H., Moller, E., Sixt, T., Roduner, E. (2004) In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications. J. Power Sources 127, 325–330.

    CAS  Google Scholar 

  • Panchenko, A. (2006) DFT investigation of the polymer electrolyte membrane degradation caused by OH radicals in fuel cells. J. Membr. Sci. 278, 269–278.

    CAS  Google Scholar 

  • Paulus, U.A., Wokaun, A., Scherer, G.G., Schmidt, T.J., Stamenkovic, V. , Markovic, N.M., Ross, P.N. (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 47, 3787–3798.

    CAS  Google Scholar 

  • Pianca, M., Barchiesi, E., Esposto, G., Radice, S. (1999) End groups in fluoropolymers. J. Fluorine Chem. 95, 71–84.

    CAS  Google Scholar 

  • Pozio, A., Silva, R.F., De Francesco, M., Giorgi, L. (2003) Nafion degradation in PEFCs from end plate iron contamination. Electrochim. Acta 48, 1543–1549.

    CAS  Google Scholar 

  • Preli, F., Progress in improving durability of pem fuel cells for stationary and transportation applications. Fourth International Fuel Cell Workshop 2005, Yamanashi, Japan, 2005.

    Google Scholar 

  • Qiao, J.L., Saito, M., Hayamizu, K., Okada, T. (2006) Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J. Electrochem. Soc. 153, A967–A974.

    CAS  Google Scholar 

  • Roeselova, M., Vieceli, J., Dang, L.X., Garrett, B.C., Tobias, D.J. (2004) Hydroxyl radical at the air–water interface. J. Am. Chem. Soc. 126, 16308–16309.

    CAS  Google Scholar 

  • Scherer, G.G. (1990) Polymer membranes for fuel-cells. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 94, 1008–1014.

    CAS  Google Scholar 

  • Schiraldi, D.A. (2006) Perfluorinated polymer electrolyte membrane durability. Polym. Rev. 46, 315–327.

    CAS  Google Scholar 

  • Schmidt, T.J., Paulus, U.A., Gasteiger, H.A., Behm, R.J. (2001) The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J. Electroanal. Chem. 508, 41–47.

    CAS  Google Scholar 

  • Shim, J.Y., Tsushima, S., Hirai, S. (2007) Preferential thinning behaviors of the anode-side of the PEM under durability test. ECS Trans. 11, 1151–1156.

    CAS  Google Scholar 

  • Smitha, B., Sridhar, S., Khan, A.A. (2005) Solid polymer electrolyte membranes for fuel cell applications – a review. J. Membr. Sci. 259, 10–26.

    CAS  Google Scholar 

  • Sompalli, B., Litteer, B.A., Gu, W., Gasteiger, H.A. (2007) Membrane degradation at catalyst layer edges in PEMFC MEAs. J. Electrochem. Soc. 154, B1349–B1357.

    CAS  Google Scholar 

  • Springer, T.E., Zawodzinski, T.A., Gottesfeld, S. (1991) Polymer electrolyte fuel-cell model. J. Electrochem. Soc. 138, 2334–2342.

    CAS  Google Scholar 

  • St Pierre, J., Wilkinson, D.P., Knights, S., Bos, M.L. (2000) Relationships between water management, contamination and lifetime degradation in PEFC. J. New Mater. Electrochem. Syst. 3, 99–106.

    CAS  Google Scholar 

  • Stamenkovic, V., Markovic, N.M., Ross, P.N. (2001) Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 500, 44–51.

    CAS  Google Scholar 

  • Stucki, S., Scherer, G.G., Schlagowski, S., Fischer, E. (1998) PEM water electrolysers: Evidence for membrane failure in 100 kW demonstration plants. J. Appl. Electrochem. 28, 1041–1049.

    CAS  Google Scholar 

  • Takeshita, T., Miura, F., Morimoto, Y., Abstract 1511. Abstracts of 207th Electrochemical Society Meeting, Quebec City, Quebec, Canada, 2005.

    Google Scholar 

  • Tanuma, T., Terazono, S. (2006) Improving MEA durability by using a catalyst with a small number of functional groups on its surface. Chem. Lett. 35, 1422–1423.

    CAS  Google Scholar 

  • Vogel, B., Aleksandrova, E., Mitov, S., Krafft, M., Dreizler, A., Kerres, J., Hein, M., Roduner, E. (2007) Observation of fuel cell membrane degradation by ex-situ and in-situ electron paramagnetic resonance. ECS Trans. 11, 1105–1114.

    CAS  Google Scholar 

  • Wang, H., Capuano, G.A. (1998) Behavior of Raipore radiation-grafted polymer membranes in H-2/O-2 fuel cells. J. Electrochem. Soc. 145, 780–784.

    CAS  Google Scholar 

  • Weir, N.A. (1978) Reactions of hydroxyl radicals with polystyrene. Eur. Polym. J. 14, 9–14.

    CAS  Google Scholar 

  • Wilkie, C.A., Thomsen, J.R., Mittleman, M.L. (1991) Interaction of poly (methyl-methacrylate) and Nafions. J. Appl. Polym. Sci. 42, 901–909.

    CAS  Google Scholar 

  • Xie, J., Wood, D.L., Wayne, D.M., Zawodzinski, T.A., Atanassov, P., Borup, R.L. (2005) Durability of PEFCs at high humidity conditions. J. Electrochem. Soc. 152, A104–A113.

    CAS  Google Scholar 

  • Yokoyama, T., Matsumoto, Y., Meshitsuka, G. (2002) Enhancement of the reaction between pulp components and hydroxyl radical produced by the decomposition of hydrogen peroxide under alkaline conditions. J. Wood Sci. 48, 191–196.

    CAS  Google Scholar 

  • Yoshioka, S., Yoshimura, A., Fukumoto, H., Hiroi, O., Yoshiyasu, H. (2005) Development of a PEFC under low humidified conditions. J. Power Sources 144, 146–151.

    CAS  Google Scholar 

  • Yu, J.R., Yi, B.L., Xing, D.M., Liu, F.Q., Shao, Z.G., Fu, Y.Z. (2003) Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells. PCCP 5, 611–615.

    CAS  Google Scholar 

  • Yu, J.R., Matsuura, T., Yoshikawa, Y. , Islam, M.N., Hori, M. (2005a) In situ analysis of performance degradation of a PEMFC under nonsaturated humidification. Electrochem. Solid State Lett. 8, A156–A158.

    CAS  Google Scholar 

  • Yu, J.R., Matsuura, T., Yoshikawa, Y., Islam, M.N., Hori, M. (2005b) Lifetime behavior of a PEM fuel cell with low humidification of feed stream. PCCP 7, 373–378.

    CAS  Google Scholar 

  • Zhang, L., Mukerjee, S. (2006) Investigation of durability issues of selected nonfluorinated proton exchange membranes for fuel cell application. J. Electrochem. Soc. 153, A1062–A1072.

    CAS  Google Scholar 

  • Zhang, J., Litteer, B.A., Gu, W., Liu, H., Gasteiger, H.A. (2007) Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs. J. Electrochem. Soc. 154, B1006–B1011.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, H., Coms, F.D., Zhang, J., Gasteiger, H.A., LaConti, A.B. (2009). Chemical Degradation: Correlations Between Electrolyzer and Fuel Cell Findings. In: Büchi, F.N., Inaba, M., Schmidt, T.J. (eds) Polymer Electrolyte Fuel Cell Durability. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85536-3_5

Download citation

Publish with us

Policies and ethics