Skip to main content

Carbon-Support Requirements for Highly Durable Fuel Cell Operation

  • Chapter
Polymer Electrolyte Fuel Cell Durability

Abstract

Owing to its unique electrical and structural properties, high surface area carbon has found widespread use as a catalyst support material in proton exchange membrane fuel cell (PEMFC) electrodes. The highly dynamic operating conditions in automotive applications require robust and durable catalyst support materials. In this chapter, carbon corrosion kinetics of commercial conventional-carbon-supported membrane electrode assemblies (MEAs) are presented. Carbon corrosion was investigated under various automotive fuel cell operating conditions. Fuel cell system start/stop and anode local hydrogen starvation are two major contributors to carbon corrosion. Projections from these studies indicate that conventional-carbon-supported MEAs fall short of meeting automotive the durability targets of PEMFCs. MEAs made of different carbon support materials were evaluated for their resistance to carbon corrosion under accelerated test conditions. The results show that graphitized-carbon-supported MEAs are more resistant to carbon corrosion than nongraphitized carbon materials. Fundamental model analyses incorporating the measured carbon corrosion kinetics were developed for start/stop and local hydrogen starvation conditions. The combination of experiment and modeling suggests that MEAs with corrosion-resistant carbon supports are promising material approaches to mitigate carbon corrosion during automotive fuel cell operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball, S., Hudson, S., Theobald, B., and Thompsett, D. (2006) The effect of dynamic and steady state voltage excursions on the stability of carbon supported Pt and PtCo catalyst, ECS Trans., 3(1), 595.

    Article  CAS  Google Scholar 

  • Carter, R.N., Brady, B.K., Subramanian, K., Tighe, T., and Gasteiger, H.A. (2007) Spatially resolved electrode diagnostic technique for fuel cell applications, ECS Trans., 11(1), 423.

    Article  CAS  Google Scholar 

  • Debe, M.K., Schmoeckel, A.K., Vernstrom, G.D., and Atanasoski, R. (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources, 161, 1002.

    Article  CAS  Google Scholar 

  • Dicks, A.L. (2006) The role of carbon in fuel cells. J. Power Sources 156, 128.

    Article  CAS  Google Scholar 

  • Gasteiger, H.A., Gu, W., Makharia, R., Mathias, M.F., and Sompalli, B. (2003) Beginning-of-life MEA performance–Efficiency loss contributions, in: Handbook of Fuel Cells–Fundamentals,Technology, and Applications, (Eds.: Vielstich, W., Lamm, A., Gasteigerr, H.A.), Wiley (Chichester, UK), volume 3, p. 593.

    Google Scholar 

  • Gruber, T.C., Zerda, T.W., and Gerspacher, M. (1993) Three dimensional morphology of carbon black aggregates, Carbon, 31, 1209.

    Google Scholar 

  • Gruver, G.A. (1978) The corrosion of carbon black in phosphoric acid, J. Electrochem. Soc., 125,1719.

    Article  CAS  Google Scholar 

  • Gu, W., Makharia, R., Yu, P.T., and Gasteiger, H.A. (2006) Prediction of Local Hydrogen Starvation in a PEM Fuel Cell: Origin and Materials Impact, American Chemical Society 232nd National Meeting, Div. Fuel Chem. Fuel Chemistry Preprints Vol. 52/No. 2, San Francisco, CA.

    Google Scholar 

  • Gu, W., Carter, R.N., Yu, P.T., and Gasteiger, H.A. (2007) Start/stop and local H2 starvation mechanisms of carbon corrosion: Model vs. experiment, ECS Trans., 11(1), 963.

    Article  CAS  Google Scholar 

  • Heckman, F. and Harling, D. (1966) Progressive oxidation of selected particles of carbon black:Further evidence for a new microstructural model, Rubber Chem. Technol., 39, 1.

    CAS  Google Scholar 

  • Kangasniemi, K.H., Condit, D.A., and Jarvi, T.D. (2004) Characterization of vulcan electrochemiclly oxidized under simulated PEM fuel cell conditions, J. Electrochem. Soc. 151(4), 125.

    Article  Google Scholar 

  • Kinoshita, K. (1988) Carbon, Wiley (New York, NY), pp. 316–333.

    Google Scholar 

  • Kinoshita, K. and Bett, J. (1973) Electrochemical oxidation of carbon black in concentrated phosphoric acid at 135°C, Carbon, 11, 237.

    Google Scholar 

  • Kocha, S.S. (2003) Preparation principles of MEA preparation, in:Handbook of Fuel Cells –Fundamentals, Technology, and Applications, (Eds.: Vielstich, W., Lamm, A., Gasteigerr,H.A.), Wiley (Chichester, UK), volume 3, pp. 538.

    Google Scholar 

  • Makharia, R., Kocha, S.S., Yu, P.T., Sweikart, M., Gu, W., Wagner, F.T., and Gasteiger, H.A.(2006) Durability PEM fuel cell electrode materials: Requirements and benchmarking methodologies, ECS Trans., 1(8), 3.

    Article  CAS  Google Scholar 

  • Mathias, M.F., Makharia, R., Gasteiger, H.A., Conley, J.J., Fuller, T.J., Gittleman, C.J., Kocha,S.S., Miller, D.P., Mittlelsteadt, C.K., Xie, T., Yan, S.G., and Yu, P.T. (2005) Two fuel cell cars in every garage, ECS Interface, Fall, 24.

    Google Scholar 

  • Medalia, A.I. (1967) Morphology of aggregates I. Calculation of shape and bulkiness factors;application to computer-simulated flocs, J. Colloid Interface Sci., 24, 393.

    Article  CAS  Google Scholar 

  • Medalia, A.I. and Heckman, F.A. (1969) Morphology of aggregates – II. Size and shape factors of carbon black aggregates from electron microscopy, Carbon, 7, 567.

    Article  CAS  Google Scholar 

  • Meyers, J.P. and Darling, R.M. (2006) Model of carbon corrosion in PEM fuel cells, J. Electrochem.Soc., 153, A1432.

    Article  CAS  Google Scholar 

  • Neyerlin, K.C., Gu, W., Jorne, J., and Gasteiger, H.A. (2006) Determination of catalyst unique parameters for the oxygen reduction reaction in a PEM fuel cell, J. Electrochem. Soc., 153, A1955.

    Article  CAS  Google Scholar 

  • Neyerlin, K.C., Gu, W., Jorne, J., and Gasteiger, H.A. (2007) Study of the exchange current density for the hydrogen oxidation and evolution reactions, J. Electrochem. Soc. 154(7), B631.

    Article  CAS  Google Scholar 

  • Passalacqua, E., Antonucci, P.L., Vivaldi, M., Patti, A., Antonucci, V., Giordano, N., and Kinoshita, K.(1992) The influence of Pt on the electrooxidation behavior of carbon in phosphoric acid, Electrochim.Acta, 37, 2725.

    Article  CAS  Google Scholar 

  • Patterson, T.W. and Darling, R.M. (2006) Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel cell starvation. Electrochem. Solid-State Lett., 9(4), A183.

    Article  CAS  Google Scholar 

  • Perry, M.L., Patterson, T.W., and Reiser, C. (2006) System strategies to mitigate carbon corrosion in fuel cells, ECS Trans., 3(1), 783.

    Article  CAS  Google Scholar 

  • Ralph, T.R., Hudson, S., and Wilkinson, D.P. (2006) Electrocatalyst stability in PEMFCs and the role of fuel starvation and cell reversal tolerant anodes, ECS Trans., 1(8), 67.

    Article  CAS  Google Scholar 

  • Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M.L., and Jarvi, T.D. (2005)A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett., 8(6), A273.

    Article  CAS  Google Scholar 

  • Rewick, R.T., Wentrcek, P.R., and Wise, H. (1974) Carbon gasification in the presence of metal catalysts, Fuel, 53, 274.

    Article  CAS  Google Scholar 

  • Roen, L.M., Paik, C.H., and Jarvi, T.D. (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes, Electrochem. Solid-State Lett., 7(1), A19.

    Article  CAS  Google Scholar 

  • Ross, P.N. and Sokol, H. (1984) The corrosion of carbon black anodes in alkaline electrolyte,J. Electrochem. Soc., 131, 1742.

    Article  CAS  Google Scholar 

  • Stevens, D.A. and Dahn, J.R. (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells, Carbon, 43, 179.

    Article  CAS  Google Scholar 

  • Stonehart, P. (1984) Carbon substrates for phosphoric acid fuel cell cathodes, Carbon, 22, 423.

    Article  CAS  Google Scholar 

  • Tang, H., Qi, Z., Ramani, M., and Elter, F.E. (2005) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources, 158, 1306.

    Article  Google Scholar 

  • Van Zee, J.W. (2007) Fuel Cell Research at University of South Carolina. DOE Program Review May 2007, Project ID: FCP#8.

    Google Scholar 

  • Wissler, M. (2006) Graphite and carbon powders for electrochemical applications, J. Power Sources, 156, 142.

    Article  CAS  Google Scholar 

  • Yu, P.T., Kocha, S., Paine, L., Gu, W., and Wagner, F.T. (2004) The Effect of Air Purge on the Degradation of PEM Fuel Cell during Startup and Shutdown Procedures, AIChE 2004 Annual Meeting, New Orleans, LA, April 25–29.

    Google Scholar 

  • Yu, P.T., Gu, W., Makharia, R., Wagner, F.T., and Gasteiger, H.A. (2006a) The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation, ECS Trans., 3(1), 797.

    Article  CAS  Google Scholar 

  • Yu, P.T., Gu, W., and Gasteiger, H.A. (2006b) GM Internal Experimental Data, to be published.

    Google Scholar 

  • Zhang, J. (2007) GM-Internal Experimental Data, unpublished.

    Google Scholar 

  • Zhang, J., Moses, R., and Subramanian, K. (2007) GM-Internal Experimental Data, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yu, P.T., Gu, W., Zhang, J., Makharia, R., Wagner, F.T., Gasteiger, H.A. (2009). Carbon-Support Requirements for Highly Durable Fuel Cell Operation. In: Büchi, F.N., Inaba, M., Schmidt, T.J. (eds) Polymer Electrolyte Fuel Cell Durability. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85536-3_3

Download citation

Publish with us

Policies and ethics