Operating Requirements for Durable Polymer-Electrolyte Fuel Cell Stacks

  • Mike L. Perry
  • Robert M. Darling
  • Shampa Kandoi
  • Timothy W. Patterson
  • Carl Reiser


Successful developers of fuel cells have learned that the keys to achieving excellent durability are controlling potential and temperature, as well as proper management of the electrolyte. While a polymer-electrolyte fuel cell (PEFC) has inherent advantages relative to other types of fuel cells, including low operating temperatures and an immobilized electrolyte, PEFC stacks also have unique durability challenges owing to the intended applications. These challenges include cyclic operation that can degrade materials owing to significant changes in potential, temperature, and relative humidity. The need for hydration of the membrane as well as the presence of water as both liquid and vapor within the cells also present complications. Therefore, the development of durable PEFC stacks requires careful attention to the operating conditions and effective water management.


Fuel Cell Polymer Electrolyte Catalyst Layer Membrane Electrode Assembly Concentrate Phosphoric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bett, J.A.S. Kinoshita, K., and Stonehart, P. (1976) Crystallite growth of platinum dispersed on graphitized carbon black, J. Catal., 41, 124–133.CrossRefGoogle Scholar
  2. Binder, H., Kohling, A., Richter, K., and Sandstede, G. (1964) Über die anodische oxydation vonAktivkohlen in wässrigen elektrolyten, Electrochim. Acta, 9, 255–274CrossRefGoogle Scholar
  3. Bindra, P., Clouser, S.J., and Yeager, E. (1979) Platinum dissolution in concentrated phosphoric acid, J. Electrochem. Soc. 126, 1631–1632.CrossRefGoogle Scholar
  4. Blair, L. (2005) PEMFC Freeze Start, U.S. DOE's Fuel Cell Operations at Sub-Freezing Temperatures Workshop, Phoenix, AZ, USA.Google Scholar
  5. Bregoli, L.J. (1978) The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid, Electrochim. Acta, 23, 489–492.CrossRefGoogle Scholar
  6. Cho, E.A., Ko, J.J., Ha, H.Y., Hong, S.A., Lee, K.Y., Lim, T.W., and Oh, I.H., (2004) Effects ofwater removal on the performance degradation of PEMFCs repetitively brought to <0 °C, J. Electrochem. Soc., 151, A661–A665.CrossRefGoogle Scholar
  7. Collier, A., Wang, H., Yuan, X.Z., Zhang, J., and Wilkinson, D.P. (2006) Degradation of polymer electrolyte membranes, Int. J. Hydrogen Energy, 31, 1838–1854.CrossRefGoogle Scholar
  8. Donahue, J., Fuller, T.F., Yang, D., and Yi, J.S. (2002) Method and apparatus for regenerating the performance of PEM fuel cell, U.S. Patent 6,399,231.Google Scholar
  9. Doyle, M. and Rajendran, G. (2003) Perfluorinated membranes in: Handbook of Fuel Cells Fundamentals, Technology, and Applications, Edited by Vielstich, W., Gasteiger, H.A., and Lamm, A., vol. 3, Wiley, Hoboken, NJ, pp. 351–395.Google Scholar
  10. Eickes, C., Piela, P., Davey, J., and Zelenay, P. (2006) Recoverbale cathode performance loss in direct methanol fuel cells, J. Electrochem. Soc., 153, A171–A178.CrossRefGoogle Scholar
  11. Ferreira, P.J., la O', G.J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S., and Gasteiger, H.A. (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells, J. Electrochem. Soc., 152, A2256–A2271.CrossRefGoogle Scholar
  12. Fuller, T.F., Perry, M.L., and Reiser, C. (2005) Applying the lessons learned from PAFC to PEM fuel cells, Electrochem. Soc. Proc. Vol., 8, 337–345.Google Scholar
  13. Gasteiger, H.A., Gu, W., Makharia, R., Mathias, M.F., and Sompalli, B. (2003) Beginning-of-life MEA performance – Efficiency loss contributions in: Handbook of Fuel Cells Fundamentals, Technology, and Applications, Edited by Vielstich, W., Gasteiger, H.A., and Lamm, A., vol. 3, Wiley, Hoboken, NJ, pp. 593–610.Google Scholar
  14. Gebel, G., Aldebert, P., and Pineri, M. (1993) Swelling study of pefluorosulphonated ionomer membranes, Polymer, 34, 333–339.CrossRefGoogle Scholar
  15. Gottesfeld, S. (1997) Polymer electrolyte fuel cells in Advances in Electrochemical Science and Engineering, Edited by Alkire, R., Gerischer, H., Kolb, D., and Tobias, C., vol. 5, Wiley, Germany, pp. 195–301.CrossRefGoogle Scholar
  16. Gruver, G.A., Pascoe, R.F., and Kunz, H. R. (1980) Surface area loss of platinum supported on carbon in phosphoric acid electrolyte, J. Electrochem. Soc., 127, 1219–1224.CrossRefGoogle Scholar
  17. Halim, J., BÜchi, F.N., Haas, O., Stamm, M., and Scherer, G.G. (1994) Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle X-ray scattering, Electrochim. Acta, 39, 1303–1307.CrossRefGoogle Scholar
  18. He, S. and Mench, M. (2006) One dimensional transient model for frost heave in polymer electrolyte fuel cells, J. Electrochem. Soc., 153, A1724–A1731.CrossRefGoogle Scholar
  19. Hsu, W.Y. and Gierke, T.D. (1983) Ion transport and clustering in Nafion perfluorinated membranes, J. Membr. Sci., 13, 307–326CrossRefGoogle Scholar
  20. Huang, X.Y., Solasi, R., Zou, Y. , Feshler, M., Reifsnider, K., Condit, D., Burlatshy, S., and Madden, T. (2006) Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability, J. Polym. Sci. Part B – Polym. Phys., 44, 2346–2357.CrossRefGoogle Scholar
  21. Jarvi, T., Patterson, T., Cipollini, N., Hertzberg, J., and Perry, M. (2003) Recoverable performance losses in PEM fuel cells, Electrochemical Society Meeting Abstracts, Paris.Google Scholar
  22. Kangasniemi, K.H., Condit, D.A. and Jarvi, T.D. (2004) Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions, J. Electrochem. Soc., 151, E125–E132.CrossRefGoogle Scholar
  23. Kinoshita, K. (1988) Carbon: Electrochemical and Physiochemical Properties, Wiley, New York, N Y.Google Scholar
  24. Kinoshita, K. and Bett, J.A.S. (1974) Effects of graphitization on the corrosion of carbon blacks, Proceedings of the Symposium on Corrosion Problems in Energy Conversion and Generation, pp. 43–55.Google Scholar
  25. Kinoshita, K., Lundquist, J.T., and Stonehart, P. (1973) Potential cycling effects on platinum electrocatalyst surfaces', J. Electroanal. Chem. Interfacial Electrochem, 48, 57.CrossRefGoogle Scholar
  26. Kopasz, J. (2007) High temperature membrane working group, U.S. DOE Annual Hydrogen Program Review, Arlington VA, USA.Google Scholar
  27. LaConti, A.B., Hamdan, M., and McDonald, R.C. (2003) Mechanisms of membrane degradation in: Handbook of Fuel Cells Fundamentals, Technology, and Applications, Edited by Vielstich, W. Gasteiger, H.A., and Lamm, A., vol. 3, Wiley, Hoboken, NJ, pp. 647–662.Google Scholar
  28. Landsman, D.A. and Luzack, F.J. (2003) Catalyst studies and coating technologies in: Handbook of Fuel Cells Fundamentals, Technology, and Applications, Edited by Vielstich, W., Gasteiger, H.A., and Lamm, A., vol. 4, Wiley, Hoboken, NJ, pp. 811–831.Google Scholar
  29. Luzack, F.J. and Landsman, D.A. (1983) Ternary fuel cell catalysts containing platinum, cobalt and chromium, U.S. Patent 4,447,506.Google Scholar
  30. Masten, D.A. and Bosco, A.D. (2003) System design for vehicle applications: GM/Opel in: Handbook of Fuel Cells Fundamentals, Technology, and Applications, Edited by Vielstich, W., Gasteiger, H.A., and Lamm, A., vol. 3, Wiley, Hoboken, NJ, pp. 714–724.Google Scholar
  31. Mathias, M.F., Makharia, M., Gasteiger, H.A., Conley, J.J., Fuller, T.J., Gittleman, C.J., Kocha,S.S., Miller, D.P., Mittelsteadt, C.K., Xie, T., Yan, S.G., and Yu, P.T. (2005) Two fuel cell cars in every garage?, Electrochem. Soc. Interface, 14, 24–35.Google Scholar
  32. Meyers, J.P (2005) Fundamental issues in subzero PEMFC startup and operation, U.S. DOE's Fuel Cell Operations at Sub-Freezing Temperatures Workshop, Phoenix AZ, USA.Google Scholar
  33. Meyers, J.P. and Darling, R.D. (2006) Model of carbon corrosion in PEM fuel cells, J. Electrochem. Soc., 153, A1432–A1442.CrossRefGoogle Scholar
  34. Meyers, J.P., Darling, R.D., Evans, C., Balliet, R., and Perry, M.L. (2006) Evaporatively-cooled PEM fuel-cell stack and system, ECS Trans., 3, 1207–1214.CrossRefGoogle Scholar
  35. Mitsushima, S., Kawahara, S., Ota, K., and Kamiya, N. (2007) Consumption rate of Pt under potential cycling, J. Electrochem. Soc., 154, B153–B158.CrossRefGoogle Scholar
  36. Mittal, V.O., Kunz, H.R., and Fenton, J.M. (2006) Effects of catalyst properties on membrane degradation rate and the underlying degradation mechanism in PEMFCs, J. Electrochem. Soc., 153, A1755–A1759.CrossRefGoogle Scholar
  37. Neyerlin, K.C., Gasteiger, H.A., Mittelsteadt, C.K., Jorne, J., and Gu, W. (2005) Effect of relative humidity on oxygen reduction kinetics in a PEMFC, J. Electrochem. Soc., 152, A1073–A1080.CrossRefGoogle Scholar
  38. Paik, C.H., Saloka, G.S., and Graham, G.W. (2007) Influence of cyclic operation on PEM fuel cell catalyst stability, Electrochem. Solid-State Lett., 10, B39–B42.CrossRefGoogle Scholar
  39. Passalacqua, E., Antonucci, P. L., Vivaldi, A., Patti, A., Antonucci, V., Giordano, N., and Kinoshita, K. (1992) The influence of Pt on the electrooxidation behavior of carbon in phosphoric acid, Electrochim. Acta, 37, 2725–2730.CrossRefGoogle Scholar
  40. Patterson, T. (2002) Effect of potential cycling on loss of electrochemical surface area of platinum catalyst in polymer electrolyte membrane fuel cell, AIChE National Conference, New Orleans, LA, USA.Google Scholar
  41. Patterson, T.W. and Darling, R.D. (2006) Damage to cathode catalyst of a PEM fuel cell caused by localized fuel starvation, Electrochem. Solid-State Lett., 9, A183–A185.CrossRefGoogle Scholar
  42. Perry, M.L. and Darling R.M. (2004) Optimizing PEFC stack design and operation for energy and water balance in transportation systems, Electrochem. Soc. Proc., PV2004-21, 634.Google Scholar
  43. Perry, M.L., Newman, J., and Cairns, E.J. (1998) Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes, J. Electrochem. Soc., 145, 5–15.CrossRefGoogle Scholar
  44. Perry, M.L., Patterson, T.W., and Reiser, C. (2006) System strategies to mitigate carbon corrosion in fuel cells, ECS Trans., 3, 783–795.CrossRefGoogle Scholar
  45. Perry, M., Patterson, T., and O'Neill, J. (2007) PEM fuel cell freeze durability and cold start project, U.S. DOE Annual Hydrogen Program Review, Arlington VA, USA.Google Scholar
  46. Pourbaix, M. (1974) Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, TX, USA.Google Scholar
  47. Protsailo, L. (2006) Development of high temperature membranes and improved cathode catalysts for PEM fuel cells, U.S. DOE Annual Hydrogen Program Review, Arlington VA, USA.Google Scholar
  48. Reiser, C. (1997), Ion exchange membrane fuel cell with water management pressure differentials, U.S. Patent 5,700,595.Google Scholar
  49. Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M.L., and Jarvi, T.D. (2005) Areverse-current decay mechanism for fuel cells, Electrochem. Solid-State Lett., 8, A273–A276.CrossRefGoogle Scholar
  50. Uribe, F.A. and Zawodzinski, T.A. (2002) A study of polymer electrolyte fuel cell performance at high voltages; dependence on cathode catalyst layer composition and on voltage conditioning, Electrochim. Acta, 47, 3799–3806.CrossRefGoogle Scholar
  51. Wang, X., Kumar, R., and Myers, D. J. (2006) Effect of voltage on platinum dissolution, Electrochem. Solid-State Lett., 9, A225–A227.CrossRefGoogle Scholar
  52. Weber, A.Z. and Darling, R.M. (2007) Understanding porous water-transport plates in polymer-electrolyte fuel cells, J. Power Sources, 168, 191–199.CrossRefGoogle Scholar
  53. Weber, A.W. and Newman, J. (2004) A theoretical study of membrane constraint in polymer-electrolyte fuel cells, AIChE J., 50, 3215–3226.CrossRefGoogle Scholar
  54. Wheeler, D.J., Yi, J.S., Fredley, R., Yang, D., Patterson, T., and VanDine, L. (2001) Advancements in fuel cell stack technology at international fuel cells, J. New Mater. Electrochem. Syst., 4, 233–238.Google Scholar
  55. Woods, R. (1976) Chemisorption at electrodes in: Electroanalytical Chemistry, Edited by A. J.Bard, vol. 9, Marcel Dekker, New York, N Y, p. 1.Google Scholar
  56. Yu, J., Matsuura, T., Yoshikawa, Y., Islam, M.N., and Hori, M. (2005a) In situ analysis of performance degradation of a PEMFC under nonsaturated humidification, Electrochem. Solid-State Lett., 8, A156–A158.CrossRefGoogle Scholar
  57. Yu, P., Pemberton, M., and Plasse, P. (2005b) PtCo/C cathode catalyst for improved durability in PEMFCs, J. Power Sources, 144, 11–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mike L. Perry
    • 1
  • Robert M. Darling
    • 2
  • Shampa Kandoi
    • 2
  • Timothy W. Patterson
    • 2
  • Carl Reiser
    • 2
  1. 1.United Technologies Research CentreEast HartfordUSA
  2. 2.UTC PowerSouth WindsorUSA

Personalised recommendations