Skip to main content

Dissolution and Stabilization of Platinum in Oxygen Cathodes

  • Chapter

Abstract

In this brief review of the dissolution and solubility of platinum under equilibrium conditions and the degradation of platinum nanoparticles at the cathode under various operating conditions, we discuss some mechanisms of degradation, and then offer recent possibilities for overcoming the problem. The data indicate that platinum nanoparticle electrocatalysts at the cathode are unstable under harsh operating conditions, and, as yet, often would be unsatisfactory for usage as the cathode material for fuel cells. Carbon corrosion, particularly under start/stop circumstances in automobiles, also entails electrical isolation and aggregation of platinum nanoparticles. We also discuss new approaches to alleviate the problem of stability of cathode electrocatalysts. One involves a class of platinum monolayer electrocatalysts that, with adequate support and surface segregation, demonstrated enhanced catalytic activity and good stability in a long-term durability test. The other approach rests on the stabilization effects of gold clusters. This effect is likely to be applicable to various platinum- and platinum-alloy-based electrocatalysts, causing their improved stability against platinum dissolution under potential cycling regimes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A. and Uribe, F. (2007) Platinum monolayer fuel cell electrocatalysts, Top. Catal. 46, 249–262.

    Article  CAS  Google Scholar 

  • Angerstein-Kozlowska, H., Conway, B. E. and Sharp, W. B. A. (1973) The real condition of electrochemially oxidized platinum surfaces, J. Electroanal. Chem. 43, 9–36.

    Article  Google Scholar 

  • Aragane, J., T. Murahashi and Odaka, T. (1988) Change of Pt distribution in the active components of phosphoric acid fuel cell, J. Electrochem. Soc. 135, 844–850.

    Article  CAS  Google Scholar 

  • Azaroual, M., Romand, B., Freyssinet, P. and Disnar, J.-R. (2001) Solubility of platinum in aqueous solutions at 25°C and pHs 4 to 10 under oxidizing conditions, Geochim. Cosmochim. Acta 65, 4453–4466.

    Article  CAS  Google Scholar 

  • Bett, J. A. S., Kinoshita, K. and Stonehart, P. (1976) Crystallite growth of platinum dispersed on graphitized carbon black: II. Effect of liquid environment, J. Catal. 41, 124–133.

    Article  CAS  Google Scholar 

  • Bi, W., Gray, G. E. and Fuller, T. F. (2007) PEM fuel cell Pt/C dissolution and deposition in nafion electrolyte, Electrochem. Solid-State Lett. 10, B101–B104.

    Article  CAS  Google Scholar 

  • Bindra, P., Clouser, S. J. and Yeager, E. (1979) Platinum dissolution in concentrated phosphoric-acid, J. Electrochem. Soc. 126, 1631–1632.

    Article  CAS  Google Scholar 

  • Birss, V. I., M. Chang and J. Segal (1993) Platinum oxide film formation-reduction: an in-situ mass measurement study, J. Electroanal. Chem. 355, 181–191.

    Article  CAS  Google Scholar 

  • Blurton, K. F., Kunz, H. R. and Rutt, D. R. (1978) Surface area loss of platinum supported on graphite, Electrochim. Acta 23, 183–190.

    Article  CAS  Google Scholar 

  • Bonakdarpour, A., Wenzel, J., Stevens, D. A., Sheng, S., Monchesky, T. L., Lobel, R., Atanasoski, R. T., Schmoeckel, A. K., Vernstrom, G. D., Debe, M. K. and Dahn, J. R. (2005) Studies of transition metal dissolution from combinatorially sputtered, nanostructured Pt1-xMx (M = Fe, Ni; 0 < x < 1) electrocatalysts for PEM fuel cells, J. Electrochem. Soc. 152, A61–A72.

    Article  CAS  Google Scholar 

  • Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J. E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y. , Yasuda, K., Kimijima, K. I. and Iwashita, N. (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev. 107, 3904–3951.

    Article  CAS  Google Scholar 

  • Brankovic, S. R., Wang, J. X. and Adzic, R. R. (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces, Surf. Sci. 474, L173–L179.

    Article  CAS  Google Scholar 

  • Conway, B. E. (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process, Prog. Surf. Sci. 49, 331–345.

    Article  CAS  Google Scholar 

  • Dam, V. A. T. and de Bruijn, F. A. (2007) The stability of PEMFC electrodes – platinum dissolution vs. potential and temperature investigated by quartz crystal microbalance, J. Electrochem. Soc. 154, B494–B499.

    Article  CAS  Google Scholar 

  • Darling, R. M. and Meyers, J. P. (2003) Kinetic model of platinum dissolution in PEMFCs, J. Electrochem. Soc. 150, A1523–A1527.

    Article  CAS  Google Scholar 

  • Darling, R. M. and Meyers, J. P. (2005) Mathematical model of platinum movement in PEM fuel cells, J. Electrochem. Soc. 152, A242–A247.

    Article  CAS  Google Scholar 

  • Debe, M. K., Schmoeckel, A. K., Vernstrorn, G. D. and Atanasoski, R. (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells, J. Power Sources 161, 1002–1011.

    Article  CAS  Google Scholar 

  • Del Popolo, M. G., Leiva, E. P. M., Mariscal, M. and Schmickler, W. (2005) On the generation of metal clusters with the electrochemical scanning tunneling microscope, Surf. Sci. 597, 133–155.

    Article  Google Scholar 

  • Dieckmann, G. R. and Langer, S. H. (1998) Comparison of Ebonex and graphite supports for platinum and nickel electrocatalysts, Electrochim. Acta 44, 437–444.

    Article  CAS  Google Scholar 

  • Ferreira, P. J. and Shao-Horn, Y. (2007) Formation mechanism of Pt single-crystal nanoparticles in proton exchange membrane fuel cells, Electrochem. Solid-State Lett. 10, B60–B63.

    Article  CAS  Google Scholar 

  • Ferreira, P. J., la O', G. J., Shao-Horn, Y. , Morgan, D., Makharia, R., Kocha, S. and Gasteiger, H. A. (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – a mechanistic investigation, J. Electrochem. Soc. 152, A2256–A2271.

    Article  Google Scholar 

  • Fischer, A. E. and Swain, G. M. (2005) Preparation and characterization of boron-doped diamond powder – a possible dimensionally stable electrocatalyst support material, J. Electrochem. Soc. 152, B369–B375.

    Article  CAS  Google Scholar 

  • Fischer, A. E., Lowe, M. A. and Swain, G. M. (2007) Preparation and electrochemical characterization of carbon paper modified with a layer of boron-doped nanocrystalline diamond, J. Electrochem. Soc. 154, K61–K67.

    Article  CAS  Google Scholar 

  • Fuller, T. F. and Gray, G. (2006) Carbon corrosion induced by partial hydrogen coverage, ECS Trans. 1, 345.

    Article  CAS  Google Scholar 

  • Garzon, F. H., Davey, J. and Borup, R. (2006) Fuel cell catalyst particle size growth characterized by X-ray scattering methods, ECS Trans. 1, 153.

    Article  CAS  Google Scholar 

  • Greeley, J., Norskov, J. K. and Mavrikakis, M. (2002) Electronic structure and catalysis on metal surfaces, Annu. Rev. Phys. Chem. 53, 319–348.

    Article  CAS  Google Scholar 

  • Gruver, G. A., Pascoe, R. F. and Kunz, H. R. (1980) Surface area loss of platinum supported on carbon in phosphoric acid electrolyte, J. Electrochem. Soc. 127, 1219–1224.

    Article  CAS  Google Scholar 

  • Guilminot, E., Corcella, A., Charlot, F., Maillard, F. and Chatenet, M. (2007a) Detection of Ptz+ ions and Pt nanoparticles inside the membrane of a used PEMFC, J. Electrochem. Soc. 154, B96–B105.

    Article  CAS  Google Scholar 

  • Guilminot, E., Corcella, A., Chatenet, M., Maillard, F., Charlot, F., Berthome, G., Iojoiu, C., Sanchez, J. Y. , Rossinot, E. and Claude, E. (2007b) Membrane and active layer degradation upon PEMFC steady-state operation, J. Electrochem. Soc. 154, B1106–B1114.

    Article  CAS  Google Scholar 

  • Harrington, D. A. (1997) Simulation of anodic Pt oxide growth, J. Electroanal. Chem. 420, 101–109.

    Article  CAS  Google Scholar 

  • Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, A., Gasteiger, H. and Abbott, J. (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells, Fuel Cells 5, 302–308.

    Article  CAS  Google Scholar 

  • Honji, A., Mori, T., Tamura, K. and Hishinuma, Y. (1988) Agglomeration of platinum particles supported on carbon in phosphoric acid, J. Electrochem. Soc. 135, 355–359.

    Article  CAS  Google Scholar 

  • Hupert, M., Muck, A., Wang, R., Stotter, J., Cvackova, Z., Haymond, S., Show, Y. and Swain, G. M. (2003) Conductive diamond thin-films in electrochemistry, Diamond Relat. Mater. 12, 1940–1949.

    Article  CAS  Google Scholar 

  • Jerkiewicz, G., Vatankhah, G., Lessard, J., Soriaga, M. P. and Park, Y. S. (2004) Surface-oxide growth at platinum electrodes in aqueous H2SO4 reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements, Electrochim. Acta 49, 1451–1459.

    CAS  Google Scholar 

  • Johnson, D. C., Napp, D. T. and Bruckenstein, S. (1970) A ring-disk electrode study of the current/ potential behaviour of platinum in 1.0 M sulphuric and 0.1 M perchloric acids, Electrochim. Acta 15, 1493–1509.

    Article  CAS  Google Scholar 

  • Kinoshita, K. (1988) Carbon: Electrochemical and Physicochemical Properties, Wiley, New York, NY.

    Google Scholar 

  • Kinoshita, K., Lundquist, J. T. and Stonehart, P. (1973) Potential cycling effects on platinum electrocatalyst surfaces, J. Electroanal. Chem. 48, 157–166.

    Article  CAS  Google Scholar 

  • Komanicky, V., Chang, K. C., Menzel, A., Markovic, N. M., You, H., Wang, X. and Myers, D. (2006) Stability and dissolution of platinum surfaces in perchloric acid, J. Electrochem. Soc. 153, B446–B451.

    Article  CAS  Google Scholar 

  • Lefebvre, M. C., Qi, Z. G. and Pickup, P. G. (1999) Electronically conducting proton exchange polymers as catalyst supports for proton exchange membrane fuel cells – electrocatalysis of oxygen reduction, hydrogen oxidation, and methanol oxidation, J. Electrochem. Soc. 146, 2054–2058.

    Article  CAS  Google Scholar 

  • Mathias, M. F., Makharia, R., Gasteiger, H. A., Conley, J. J., Fuller, T. J., Gittleman, C. J., Kocha, S. S., Miller, D. P., Mittelsteadt, C. K., Xie, T., Yan, S. G. and Yu, P. T. (2005) Two fuel cell cars in every garage?, Interface 14, 24–35.

    CAS  Google Scholar 

  • Meng, H. and Shen, P. K. (2005) The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction, Chem. Commun. 35, 4408–4410.

    Article  Google Scholar 

  • Mitsushima, S., Kawahara, S., Ota, K.-I. and Kamiya, N. (2007a) Consumption rate of Pt under potential cycling, J. Electrochem. Soc. 154, B153–B158.

    Article  CAS  Google Scholar 

  • Mitsushima, S., Koizumi, Y., Ota, K. and Kamiya, N. (2007b) Solubility of platinum in acidic media (I) – in sulfuric acid, Electrochemistry 75, 155–158.

    CAS  Google Scholar 

  • Nagy, Z. and You, H. (2002) Applications of surface X-ray scattering to electrochemistry problems, Electrochim. Acta 47, 3037–3055.

    Article  CAS  Google Scholar 

  • Nie, M., Shen, P. K., Wu, M., Wei, Z. D. and Meng, H. (2006) A study of oxygen reduction on improved Pt-WC/C electrocatalysts, J. Power Sources 162, 173–176.

    Article  CAS  Google Scholar 

  • Ota, K.-I., Nishigori, S. and Kamiya, N. (1988) Dissolution of platinum anodes in sulfuric acid solution, J. Electroanal. Chem. 257, 205–215.

    Article  CAS  Google Scholar 

  • Parsonage, E. E. and Debe, M. K., (1994), U.S. Patent 5,338,430.

    Google Scholar 

  • Patterson, T. W. (2002) AIChE Spring National Meeting, New Orleans, LA, pp. 313–318.

    Google Scholar 

  • Patterson, T. W. and Darling, R. M. (2006) Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation, Electrochem. Solid-State Lett. 9, A183–A185.

    Article  CAS  Google Scholar 

  • Pourbaix, M. (1974) Atlas of Electrochemical Equilibria, 2nd ed., NACE, Houston, TX.

    Google Scholar 

  • Rand, D. A. J. and Woods, R. (1972) A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry, J. Electroanal. Chem. 35, 209–218.

    Article  CAS  Google Scholar 

  • Reiser, C. A., Bregoli, L., Patterson, T. W., Yi, J. S., Yang, J. D., Perry, M. L. and Jarvi, T. D. (2005) A reverse-current decay mechanism for fuel cells, Electrochem. Solid-State Lett. 8, A273–A276.

    Article  CAS  Google Scholar 

  • Roen, L. M., Paik, C. H. and Jarvi, T. D. (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes, Electrochem. Solid-State Lett. 7, A19–A24.

    Article  CAS  Google Scholar 

  • Roudgar, A. and Gro β, A. (2004) Local reactivity of supported metal clusters: Pd n on Au(111), Surf. Sci. 559, L180–L186.

    Article  CAS  Google Scholar 

  • Sasaki, K., Wang, J. X., Balasubramanian, M., McBreen, J., Uribe, F. and Adzic, R. R. (2004) Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability, Electrochim. Acta 49, 3873–3877.

    Article  CAS  Google Scholar 

  • Satija, R., Jacobson, D. L., Arif, M. and Werner, S. A. (2004) In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells, J. Power Sources, 129, 238–245.

    Article  CAS  Google Scholar 

  • Shao, Y., Yin, G., Zhang, J. and Gao, Y. (2006) Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution, Electrochim. Acta 51, 5853.

    Article  CAS  Google Scholar 

  • Shao, Y. , Yin, G. and Gao, Y. (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources 171, 558–566.

    Article  CAS  Google Scholar 

  • Shao-Horn, Y., Sheng, W. C., Chen, S., Ferreria, P. J., Hollby, E. F. and Morgan, D. (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells, Top. Catal. 46, 285–305.

    Article  Google Scholar 

  • Stevens, D. A., Hicks, M. T., Haugen, G. M. and Dahn, J. R. (2005) Ex situ and in situ stability studies of PEMFC catalysts, J. Electrochem. Soc. 152, A2309–A2315.

    Article  CAS  Google Scholar 

  • Stuve, E. M. and Gastaiger, H. A., (2006), PEMFC short course, 210th Meeting of The Electrochemical Society, Cancun, Mexico.

    Google Scholar 

  • Teranishi, K., Kawata, K., Tsushima, S. and Hirai, S. (2006) Degradation mechanism of PEMFC under open circuit operation, Electrochem. Solid-State Lett. 9, A475–A477.

    Article  CAS  Google Scholar 

  • Tseung, A. C. C. and Dhara, S. C. (1975) Loss of surface area by platinum and supported platinum black electrocatalyst, Electrochim. Acta 20, 681–683.

    Article  CAS  Google Scholar 

  • Virkar, A. V. and Zhou, Y. K. (2007) Mechanism of catalyst degradation in proton exchange membrane fuel cells, J. Electrochem. Soc. 154, B540–B546.

    Article  CAS  Google Scholar 

  • Voorhees, P. W. (1985) The theory of Ostwald ripening, J. Stat. Phys. 38, 231–252.

    Article  Google Scholar 

  • Wang, J. and Swain, G. M. (2002) Dimensionally stable Pt/diamond composite electrodes in concentrated H3PO4 at high temperature, Electrochem. Solid-State Lett. 5, E4–E7.

    Article  CAS  Google Scholar 

  • Wang, J. and Swain, G. M. (2003) Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis – Preliminary studies of the oxygen-reduction reaction, J. Electrochem. Soc. 150, E24–E32.

    Article  CAS  Google Scholar 

  • Wang, X., Li, W. Z., Chen, Z. W., Waje, M. and Yan, Y. S. (2006a) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell, J. Power Sources 158, 154–159.

    Article  CAS  Google Scholar 

  • Wang, X. P., Kumar, R. and Myers, D. J. (2006b) Effect of voltage on platinum dissolution relevance to polymer electrolyte fuel cells, Electrochem. Solid-State Lett. 9, A225–A227.

    Article  CAS  Google Scholar 

  • Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells, J. Electrochem. Soc. 140, 2872–2877.

    Article  CAS  Google Scholar 

  • Wu, G., Li, L., Li, J. H. and Xu, B. Q. (2005) Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation, Carbon 43, 2579–2587.

    Article  CAS  Google Scholar 

  • Xie, J., Wood, D. L., More, K. L., Atanassov, P. and Borup, R. L. (2005a) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions, J. Electrochem. Soc. 152, A1011–A1020.

    Article  Google Scholar 

  • Xie, J., Wood, D. L., Wayne, D. M., Zawodzinski, T. A., Atanassov, P. and Borup, R. L. (2005b) Durability of PEFCs at high humidity conditions, J. Electrochem. Soc. 152, A104–A113.

    Article  CAS  Google Scholar 

  • Yasuda, K., Taniguchi, A., Akita, T., Ioroi, T. and Siroma, Z. (2006a) Characteristics of a platinum black catalyst layer with regard to platinum dissolution phenomena in a membrane electrode assembly, J. Electrochem. Soc. 153, A1599–A1603.

    Article  CAS  Google Scholar 

  • Yasuda, K., Taniguchi, A., Akita, T., Ioroi, T. and Siroma, Z. (2006b) Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling, Phys. Chem. Chem. Phys. 8, 746–752.

    Article  CAS  Google Scholar 

  • You, H., Chu, Y. S., Lister, T. E., Nagy, Z., Ankudiniv, A. L. and Rehr, J. J. (2000) Resonance X-ray scattering from Pt(111) surfaces under water, Physica B 283, 212–216.

    Article  CAS  Google Scholar 

  • Zhang, J., Mo, Y., Vukmirovic, M. B., Klie, R., Sasaki, K. and Adzic, R. R. (2004) Platinum mon-olayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles, J. Phys. Chem. B 108, 10955–10964.

    Article  CAS  Google Scholar 

  • Zhang, J. L., Vukmirovic, M. B., Sasaki, K., Nilekar, A. U., Mavrikakis, M. and Adzic, R. R. (2005a) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics, J. Am. Chem. Soc. 127, 12480–12481.

    Article  CAS  Google Scholar 

  • Zhang, J., Lima, F. H. B., Shao, M. H., Sasaki, K., Wang, J. X., Hanson, J. and Adzic, R. R. (2005b) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electro-catalysts for O2 reduction, J. Phys. Chem. B 109, 22701–22704.

    Article  CAS  Google Scholar 

  • Zhang, J. L., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. and Adzic, R. R. (2005c) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates, Angew. Chem. Int. Ed. 44, 2132–2135.

    Article  CAS  Google Scholar 

  • Zhang, J., Litteer, B. A., Gu, W., Liu, H. and Gasteiger, H. A. (2007a) Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs, J. Electrochem. Soc. 154, B1006–B1011.

    Article  CAS  Google Scholar 

  • Zhang, J., Sasaki, K., Sutter, E. and Adzic, R. R. (2007b) Stabilization of platinum oxygen reduction electrocatalysts using gold clusters, Science 315, 220–222.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sasaki, K., Shao, M., Adzic, R. (2009). Dissolution and Stabilization of Platinum in Oxygen Cathodes. In: Büchi, F.N., Inaba, M., Schmidt, T.J. (eds) Polymer Electrolyte Fuel Cell Durability. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85536-3_2

Download citation

Publish with us

Policies and ethics