Dissolution and Stabilization of Platinum in Oxygen Cathodes

  • Kotaro Sasaki
  • Minhua Shao
  • Radoslav Adzic


In this brief review of the dissolution and solubility of platinum under equilibrium conditions and the degradation of platinum nanoparticles at the cathode under various operating conditions, we discuss some mechanisms of degradation, and then offer recent possibilities for overcoming the problem. The data indicate that platinum nanoparticle electrocatalysts at the cathode are unstable under harsh operating conditions, and, as yet, often would be unsatisfactory for usage as the cathode material for fuel cells. Carbon corrosion, particularly under start/stop circumstances in automobiles, also entails electrical isolation and aggregation of platinum nanoparticles. We also discuss new approaches to alleviate the problem of stability of cathode electrocatalysts. One involves a class of platinum monolayer electrocatalysts that, with adequate support and surface segregation, demonstrated enhanced catalytic activity and good stability in a long-term durability test. The other approach rests on the stabilization effects of gold clusters. This effect is likely to be applicable to various platinum- and platinum-alloy-based electrocatalysts, causing their improved stability against platinum dissolution under potential cycling regimes.


Fuel Cell Gold Cluster Proton Exchange Membrane Fuel Cell Membrane Electrode Assembly Platinum Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A. and Uribe, F. (2007) Platinum monolayer fuel cell electrocatalysts, Top. Catal. 46, 249–262.CrossRefGoogle Scholar
  2. Angerstein-Kozlowska, H., Conway, B. E. and Sharp, W. B. A. (1973) The real condition of electrochemially oxidized platinum surfaces, J. Electroanal. Chem. 43, 9–36.CrossRefGoogle Scholar
  3. Aragane, J., T. Murahashi and Odaka, T. (1988) Change of Pt distribution in the active components of phosphoric acid fuel cell, J. Electrochem. Soc. 135, 844–850.CrossRefGoogle Scholar
  4. Azaroual, M., Romand, B., Freyssinet, P. and Disnar, J.-R. (2001) Solubility of platinum in aqueous solutions at 25°C and pHs 4 to 10 under oxidizing conditions, Geochim. Cosmochim. Acta 65, 4453–4466.CrossRefGoogle Scholar
  5. Bett, J. A. S., Kinoshita, K. and Stonehart, P. (1976) Crystallite growth of platinum dispersed on graphitized carbon black: II. Effect of liquid environment, J. Catal. 41, 124–133.CrossRefGoogle Scholar
  6. Bi, W., Gray, G. E. and Fuller, T. F. (2007) PEM fuel cell Pt/C dissolution and deposition in nafion electrolyte, Electrochem. Solid-State Lett. 10, B101–B104.CrossRefGoogle Scholar
  7. Bindra, P., Clouser, S. J. and Yeager, E. (1979) Platinum dissolution in concentrated phosphoric-acid, J. Electrochem. Soc. 126, 1631–1632.CrossRefGoogle Scholar
  8. Birss, V. I., M. Chang and J. Segal (1993) Platinum oxide film formation-reduction: an in-situ mass measurement study, J. Electroanal. Chem. 355, 181–191.CrossRefGoogle Scholar
  9. Blurton, K. F., Kunz, H. R. and Rutt, D. R. (1978) Surface area loss of platinum supported on graphite, Electrochim. Acta 23, 183–190.CrossRefGoogle Scholar
  10. Bonakdarpour, A., Wenzel, J., Stevens, D. A., Sheng, S., Monchesky, T. L., Lobel, R., Atanasoski, R. T., Schmoeckel, A. K., Vernstrom, G. D., Debe, M. K. and Dahn, J. R. (2005) Studies of transition metal dissolution from combinatorially sputtered, nanostructured Pt1-xMx (M = Fe, Ni; 0 < x < 1) electrocatalysts for PEM fuel cells, J. Electrochem. Soc. 152, A61–A72.CrossRefGoogle Scholar
  11. Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J. E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y. , Yasuda, K., Kimijima, K. I. and Iwashita, N. (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev. 107, 3904–3951.CrossRefGoogle Scholar
  12. Brankovic, S. R., Wang, J. X. and Adzic, R. R. (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces, Surf. Sci. 474, L173–L179.CrossRefGoogle Scholar
  13. Conway, B. E. (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process, Prog. Surf. Sci. 49, 331–345.CrossRefGoogle Scholar
  14. Dam, V. A. T. and de Bruijn, F. A. (2007) The stability of PEMFC electrodes – platinum dissolution vs. potential and temperature investigated by quartz crystal microbalance, J. Electrochem. Soc. 154, B494–B499.CrossRefGoogle Scholar
  15. Darling, R. M. and Meyers, J. P. (2003) Kinetic model of platinum dissolution in PEMFCs, J. Electrochem. Soc. 150, A1523–A1527.CrossRefGoogle Scholar
  16. Darling, R. M. and Meyers, J. P. (2005) Mathematical model of platinum movement in PEM fuel cells, J. Electrochem. Soc. 152, A242–A247.CrossRefGoogle Scholar
  17. Debe, M. K., Schmoeckel, A. K., Vernstrorn, G. D. and Atanasoski, R. (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells, J. Power Sources 161, 1002–1011.CrossRefGoogle Scholar
  18. Del Popolo, M. G., Leiva, E. P. M., Mariscal, M. and Schmickler, W. (2005) On the generation of metal clusters with the electrochemical scanning tunneling microscope, Surf. Sci. 597, 133–155.CrossRefGoogle Scholar
  19. Dieckmann, G. R. and Langer, S. H. (1998) Comparison of Ebonex and graphite supports for platinum and nickel electrocatalysts, Electrochim. Acta 44, 437–444.CrossRefGoogle Scholar
  20. Ferreira, P. J. and Shao-Horn, Y. (2007) Formation mechanism of Pt single-crystal nanoparticles in proton exchange membrane fuel cells, Electrochem. Solid-State Lett. 10, B60–B63.CrossRefGoogle Scholar
  21. Ferreira, P. J., la O', G. J., Shao-Horn, Y. , Morgan, D., Makharia, R., Kocha, S. and Gasteiger, H. A. (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – a mechanistic investigation, J. Electrochem. Soc. 152, A2256–A2271.CrossRefGoogle Scholar
  22. Fischer, A. E. and Swain, G. M. (2005) Preparation and characterization of boron-doped diamond powder – a possible dimensionally stable electrocatalyst support material, J. Electrochem. Soc. 152, B369–B375.CrossRefGoogle Scholar
  23. Fischer, A. E., Lowe, M. A. and Swain, G. M. (2007) Preparation and electrochemical characterization of carbon paper modified with a layer of boron-doped nanocrystalline diamond, J. Electrochem. Soc. 154, K61–K67.CrossRefGoogle Scholar
  24. Fuller, T. F. and Gray, G. (2006) Carbon corrosion induced by partial hydrogen coverage, ECS Trans. 1, 345.CrossRefGoogle Scholar
  25. Garzon, F. H., Davey, J. and Borup, R. (2006) Fuel cell catalyst particle size growth characterized by X-ray scattering methods, ECS Trans. 1, 153.CrossRefGoogle Scholar
  26. Greeley, J., Norskov, J. K. and Mavrikakis, M. (2002) Electronic structure and catalysis on metal surfaces, Annu. Rev. Phys. Chem. 53, 319–348.CrossRefGoogle Scholar
  27. Gruver, G. A., Pascoe, R. F. and Kunz, H. R. (1980) Surface area loss of platinum supported on carbon in phosphoric acid electrolyte, J. Electrochem. Soc. 127, 1219–1224.CrossRefGoogle Scholar
  28. Guilminot, E., Corcella, A., Charlot, F., Maillard, F. and Chatenet, M. (2007a) Detection of Ptz+ ions and Pt nanoparticles inside the membrane of a used PEMFC, J. Electrochem. Soc. 154, B96–B105.CrossRefGoogle Scholar
  29. Guilminot, E., Corcella, A., Chatenet, M., Maillard, F., Charlot, F., Berthome, G., Iojoiu, C., Sanchez, J. Y. , Rossinot, E. and Claude, E. (2007b) Membrane and active layer degradation upon PEMFC steady-state operation, J. Electrochem. Soc. 154, B1106–B1114.CrossRefGoogle Scholar
  30. Harrington, D. A. (1997) Simulation of anodic Pt oxide growth, J. Electroanal. Chem. 420, 101–109.CrossRefGoogle Scholar
  31. Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, A., Gasteiger, H. and Abbott, J. (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells, Fuel Cells 5, 302–308.CrossRefGoogle Scholar
  32. Honji, A., Mori, T., Tamura, K. and Hishinuma, Y. (1988) Agglomeration of platinum particles supported on carbon in phosphoric acid, J. Electrochem. Soc. 135, 355–359.CrossRefGoogle Scholar
  33. Hupert, M., Muck, A., Wang, R., Stotter, J., Cvackova, Z., Haymond, S., Show, Y. and Swain, G. M. (2003) Conductive diamond thin-films in electrochemistry, Diamond Relat. Mater. 12, 1940–1949.CrossRefGoogle Scholar
  34. Jerkiewicz, G., Vatankhah, G., Lessard, J., Soriaga, M. P. and Park, Y. S. (2004) Surface-oxide growth at platinum electrodes in aqueous H2SO4 reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements, Electrochim. Acta 49, 1451–1459.Google Scholar
  35. Johnson, D. C., Napp, D. T. and Bruckenstein, S. (1970) A ring-disk electrode study of the current/ potential behaviour of platinum in 1.0 M sulphuric and 0.1 M perchloric acids, Electrochim. Acta 15, 1493–1509.CrossRefGoogle Scholar
  36. Kinoshita, K. (1988) Carbon: Electrochemical and Physicochemical Properties, Wiley, New York, NY.Google Scholar
  37. Kinoshita, K., Lundquist, J. T. and Stonehart, P. (1973) Potential cycling effects on platinum electrocatalyst surfaces, J. Electroanal. Chem. 48, 157–166.CrossRefGoogle Scholar
  38. Komanicky, V., Chang, K. C., Menzel, A., Markovic, N. M., You, H., Wang, X. and Myers, D. (2006) Stability and dissolution of platinum surfaces in perchloric acid, J. Electrochem. Soc. 153, B446–B451.CrossRefGoogle Scholar
  39. Lefebvre, M. C., Qi, Z. G. and Pickup, P. G. (1999) Electronically conducting proton exchange polymers as catalyst supports for proton exchange membrane fuel cells – electrocatalysis of oxygen reduction, hydrogen oxidation, and methanol oxidation, J. Electrochem. Soc. 146, 2054–2058.CrossRefGoogle Scholar
  40. Mathias, M. F., Makharia, R., Gasteiger, H. A., Conley, J. J., Fuller, T. J., Gittleman, C. J., Kocha, S. S., Miller, D. P., Mittelsteadt, C. K., Xie, T., Yan, S. G. and Yu, P. T. (2005) Two fuel cell cars in every garage?, Interface 14, 24–35.Google Scholar
  41. Meng, H. and Shen, P. K. (2005) The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction, Chem. Commun. 35, 4408–4410.CrossRefGoogle Scholar
  42. Mitsushima, S., Kawahara, S., Ota, K.-I. and Kamiya, N. (2007a) Consumption rate of Pt under potential cycling, J. Electrochem. Soc. 154, B153–B158.CrossRefGoogle Scholar
  43. Mitsushima, S., Koizumi, Y., Ota, K. and Kamiya, N. (2007b) Solubility of platinum in acidic media (I) – in sulfuric acid, Electrochemistry 75, 155–158.Google Scholar
  44. Nagy, Z. and You, H. (2002) Applications of surface X-ray scattering to electrochemistry problems, Electrochim. Acta 47, 3037–3055.CrossRefGoogle Scholar
  45. Nie, M., Shen, P. K., Wu, M., Wei, Z. D. and Meng, H. (2006) A study of oxygen reduction on improved Pt-WC/C electrocatalysts, J. Power Sources 162, 173–176.CrossRefGoogle Scholar
  46. Ota, K.-I., Nishigori, S. and Kamiya, N. (1988) Dissolution of platinum anodes in sulfuric acid solution, J. Electroanal. Chem. 257, 205–215.CrossRefGoogle Scholar
  47. Parsonage, E. E. and Debe, M. K., (1994), U.S. Patent 5,338,430.Google Scholar
  48. Patterson, T. W. (2002) AIChE Spring National Meeting, New Orleans, LA, pp. 313–318.Google Scholar
  49. Patterson, T. W. and Darling, R. M. (2006) Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation, Electrochem. Solid-State Lett. 9, A183–A185.CrossRefGoogle Scholar
  50. Pourbaix, M. (1974) Atlas of Electrochemical Equilibria, 2nd ed., NACE, Houston, TX.Google Scholar
  51. Rand, D. A. J. and Woods, R. (1972) A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry, J. Electroanal. Chem. 35, 209–218.CrossRefGoogle Scholar
  52. Reiser, C. A., Bregoli, L., Patterson, T. W., Yi, J. S., Yang, J. D., Perry, M. L. and Jarvi, T. D. (2005) A reverse-current decay mechanism for fuel cells, Electrochem. Solid-State Lett. 8, A273–A276.CrossRefGoogle Scholar
  53. Roen, L. M., Paik, C. H. and Jarvi, T. D. (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes, Electrochem. Solid-State Lett. 7, A19–A24.CrossRefGoogle Scholar
  54. Roudgar, A. and Gro β, A. (2004) Local reactivity of supported metal clusters: Pdn on Au(111), Surf. Sci. 559, L180–L186.CrossRefGoogle Scholar
  55. Sasaki, K., Wang, J. X., Balasubramanian, M., McBreen, J., Uribe, F. and Adzic, R. R. (2004) Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability, Electrochim. Acta 49, 3873–3877.CrossRefGoogle Scholar
  56. Satija, R., Jacobson, D. L., Arif, M. and Werner, S. A. (2004) In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells, J. Power Sources, 129, 238–245.CrossRefGoogle Scholar
  57. Shao, Y., Yin, G., Zhang, J. and Gao, Y. (2006) Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution, Electrochim. Acta 51, 5853.CrossRefGoogle Scholar
  58. Shao, Y. , Yin, G. and Gao, Y. (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources 171, 558–566.CrossRefGoogle Scholar
  59. Shao-Horn, Y., Sheng, W. C., Chen, S., Ferreria, P. J., Hollby, E. F. and Morgan, D. (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells, Top. Catal. 46, 285–305.CrossRefGoogle Scholar
  60. Stevens, D. A., Hicks, M. T., Haugen, G. M. and Dahn, J. R. (2005) Ex situ and in situ stability studies of PEMFC catalysts, J. Electrochem. Soc. 152, A2309–A2315.CrossRefGoogle Scholar
  61. Stuve, E. M. and Gastaiger, H. A., (2006), PEMFC short course, 210th Meeting of The Electrochemical Society, Cancun, Mexico.Google Scholar
  62. Teranishi, K., Kawata, K., Tsushima, S. and Hirai, S. (2006) Degradation mechanism of PEMFC under open circuit operation, Electrochem. Solid-State Lett. 9, A475–A477.CrossRefGoogle Scholar
  63. Tseung, A. C. C. and Dhara, S. C. (1975) Loss of surface area by platinum and supported platinum black electrocatalyst, Electrochim. Acta 20, 681–683.CrossRefGoogle Scholar
  64. Virkar, A. V. and Zhou, Y. K. (2007) Mechanism of catalyst degradation in proton exchange membrane fuel cells, J. Electrochem. Soc. 154, B540–B546.CrossRefGoogle Scholar
  65. Voorhees, P. W. (1985) The theory of Ostwald ripening, J. Stat. Phys. 38, 231–252.CrossRefGoogle Scholar
  66. Wang, J. and Swain, G. M. (2002) Dimensionally stable Pt/diamond composite electrodes in concentrated H3PO4 at high temperature, Electrochem. Solid-State Lett. 5, E4–E7.CrossRefGoogle Scholar
  67. Wang, J. and Swain, G. M. (2003) Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis – Preliminary studies of the oxygen-reduction reaction, J. Electrochem. Soc. 150, E24–E32.CrossRefGoogle Scholar
  68. Wang, X., Li, W. Z., Chen, Z. W., Waje, M. and Yan, Y. S. (2006a) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell, J. Power Sources 158, 154–159.CrossRefGoogle Scholar
  69. Wang, X. P., Kumar, R. and Myers, D. J. (2006b) Effect of voltage on platinum dissolution relevance to polymer electrolyte fuel cells, Electrochem. Solid-State Lett. 9, A225–A227.CrossRefGoogle Scholar
  70. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells, J. Electrochem. Soc. 140, 2872–2877.CrossRefGoogle Scholar
  71. Wu, G., Li, L., Li, J. H. and Xu, B. Q. (2005) Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation, Carbon 43, 2579–2587.CrossRefGoogle Scholar
  72. Xie, J., Wood, D. L., More, K. L., Atanassov, P. and Borup, R. L. (2005a) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions, J. Electrochem. Soc. 152, A1011–A1020.CrossRefGoogle Scholar
  73. Xie, J., Wood, D. L., Wayne, D. M., Zawodzinski, T. A., Atanassov, P. and Borup, R. L. (2005b) Durability of PEFCs at high humidity conditions, J. Electrochem. Soc. 152, A104–A113.CrossRefGoogle Scholar
  74. Yasuda, K., Taniguchi, A., Akita, T., Ioroi, T. and Siroma, Z. (2006a) Characteristics of a platinum black catalyst layer with regard to platinum dissolution phenomena in a membrane electrode assembly, J. Electrochem. Soc. 153, A1599–A1603.CrossRefGoogle Scholar
  75. Yasuda, K., Taniguchi, A., Akita, T., Ioroi, T. and Siroma, Z. (2006b) Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling, Phys. Chem. Chem. Phys. 8, 746–752.CrossRefGoogle Scholar
  76. You, H., Chu, Y. S., Lister, T. E., Nagy, Z., Ankudiniv, A. L. and Rehr, J. J. (2000) Resonance X-ray scattering from Pt(111) surfaces under water, Physica B 283, 212–216.CrossRefGoogle Scholar
  77. Zhang, J., Mo, Y., Vukmirovic, M. B., Klie, R., Sasaki, K. and Adzic, R. R. (2004) Platinum mon-olayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles, J. Phys. Chem. B 108, 10955–10964.CrossRefGoogle Scholar
  78. Zhang, J. L., Vukmirovic, M. B., Sasaki, K., Nilekar, A. U., Mavrikakis, M. and Adzic, R. R. (2005a) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics, J. Am. Chem. Soc. 127, 12480–12481.CrossRefGoogle Scholar
  79. Zhang, J., Lima, F. H. B., Shao, M. H., Sasaki, K., Wang, J. X., Hanson, J. and Adzic, R. R. (2005b) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electro-catalysts for O2 reduction, J. Phys. Chem. B 109, 22701–22704.CrossRefGoogle Scholar
  80. Zhang, J. L., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. and Adzic, R. R. (2005c) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates, Angew. Chem. Int. Ed. 44, 2132–2135.CrossRefGoogle Scholar
  81. Zhang, J., Litteer, B. A., Gu, W., Liu, H. and Gasteiger, H. A. (2007a) Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs, J. Electrochem. Soc. 154, B1006–B1011.CrossRefGoogle Scholar
  82. Zhang, J., Sasaki, K., Sutter, E. and Adzic, R. R. (2007b) Stabilization of platinum oxygen reduction electrocatalysts using gold clusters, Science 315, 220–222.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kotaro Sasaki
    • 1
  • Minhua Shao
    • 1
  • Radoslav Adzic
    • 1
  1. 1.Department of Chemistry, Building 555Brookhaven National LaboratoryUptonUSA

Personalised recommendations