Performance and Durability of a Polymer Electrolyte Fuel Cell Operating with Reformate: Effects of CO, CO2, and Other Trace Impurities

  • Bin Du
  • Richard Pollard
  • John F. Elter
  • Manikandan Ramani


The performance and durability of a polymer electrolyte fuel cell (PEFC) operating with reformate is discussed. Brief overviews are given on how dilution affects the thermodynamic driving force and how diffusion of N2 and CO2, two major components in a typical reformate mix, affects the overall voltage. The primary focus is on the impact of CO on the voltage performance of the PEFC, i.e., the anode overpotential at different CO levels. Specifically, the effects of CO concentration and the impact of various CO mitigation methods on durability and degradation are presented. CO/air bleed interactions are discussed in connection with peroxide-induced membrane/ionomer degradation rates. Furthermore, the possibility of in situ anode CO formation from CO2 via the reverse water-gas-shift reaction is assessed for realistic PEFC operating conditions. The discussion includes results obtained at high CO levels and the stability of Pt–Ru catalysts. The impact of trace impurities such as NH3, H2S, and small organic molecules is also described.


Fuel Cell Oxygen Reduction Reaction Cell Voltage Proton Exchange Membrane Fuel Cell Fuel Cell Operating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, W. A., Blair, J., Bullock, K. R., and Gardner, C. L. (2005). Enhancement of the performance and reliability of CO poisoned PEM fuel cells. J. Power Sources 145(1): 55–61CrossRefGoogle Scholar
  2. Adcock, P. A., Pacheco, S. V. , Norman, K. M., and Uribe, F. A. (2005). Transition metal oxides as reconfigured fuel cell anode catalysts for improved CO tolerance: Polarization data. J. Electrochem. Soc. 152(2): A459–A466CrossRefGoogle Scholar
  3. Air Products and Chemicals, Inc. (2004). Gaseous Hydrogen SafetyGram Sheet, Air Products and Chemicals, IncGoogle Scholar
  4. Antoine, O. and Durand, R. (2000). RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®: H2O2 production in PEMFC cathode conditions. J. Appl. Electrochem. 30(7): 839–844CrossRefGoogle Scholar
  5. Baldwin, R., Pham, M., Leonida, A., McElroy, J., and Nalette, T. (1990). Hydrogen – oxygen proton-exchange membrane fuel cells and electrolyzers. J. Power Sources 29(3–4): 399–412CrossRefGoogle Scholar
  6. Baschuk, J. J. and Li, X. G. (2003). Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode. Intl. J. Energy Res. 27(12): 1095–1116CrossRefGoogle Scholar
  7. Bhatia, K. K. and Wang, C.-Y. (2004). Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed. Electrochim. Acta 49(14): 2333–2341CrossRefGoogle Scholar
  8. Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960). Transport Phenomena. New York, WileyGoogle Scholar
  9. Camara, G. A., Ticianelli, E. A., Mukerjee, S., Lee, S. J., and McBreen, J. (2002). The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J. Electrochem. Soc. 149(6): A748–A753CrossRefGoogle Scholar
  10. Carrette, L. P. L., Friedrich, K. A., Huber, M., and Stimming, U. (2001). Improvement of CO tolerance of proton exchange membrane (PEM) fuel cells by a pulsing technique. Phys. Chem. Chem. Phys. 3(3): 320–324CrossRefGoogle Scholar
  11. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C., and Tisack, M. E. (2003). Advanced Materials for Improved PEMFC Performance and Life. The 8th Grove Fuel Cell Symposium, London, UKGoogle Scholar
  12. Davies, J. C., Nielsen, R. M., Thomsen, L. B., Chorkendorff, I., Logadottir, A., Lodziana, Z., Norskov, J. K., Li, W. X., Hammer, B., Longwitz, S. R., Schnadt, J., Vestergaard, E. K., Vang, R. T., and Besenbacher, F. (2004). CO Desorption rate dependence on CO partial pressure over platinum fuel cell catalysts. Fuel Cells 4(4): 309–319CrossRefGoogle Scholar
  13. de Bruijn, F. (2005). Current status of fuel cell technology for mobile and stationary applications. Green Chem. 7(3): 132–150CrossRefGoogle Scholar
  14. de Bruijn, F. A., Papageorgopoulos, D. C., Sitters, E. F., and Janssen, G. J. M. (2002). The influence of carbon dioxide on PEM fuel cell anodes. J. Power Sources 110(1): 117–124CrossRefGoogle Scholar
  15. DOE (2005a). Fuel Cell Handbook, 7th Ed. US Department of Energy, National Energy Technology Laboratory. US Department of Energy, National Energy Technology Laboratory, Morgantown, WV, EG&G Technical Services, IncGoogle Scholar
  16. DOE (2005b). Multi-Year Research, Development and Demonstration Programs for Hydrogen, Fuel Cells & Infrastructure Technologies Program, US Department of EnergyGoogle Scholar
  17. Donaldson Company, Inc. (2003). Point of Use (POU) Filtration for Optical Elements in Semiconductor Lithography ToolsGoogle Scholar
  18. Du, B. (2004). unpublished resultsGoogle Scholar
  19. Du, B., Jacobson, D. L., Wang, G. Q., Eldrid, S., Elter, J. F., Eisman, G. A., and Arif, M. (2005). Tuning Hydrogen Content for Improved PEMFC Water Management: A Neutron Radiography Study. The 2nd International. Conference Green & Sustainable Chem., Washington, DCGoogle Scholar
  20. Du, B., Guo, Q., Pollard, R., Rodriguez, D., Smith, C., and Elter, J. F. (2006a). PEM fuel cells: Status and challenges for commercial stationary power applications. JOM 58(8): 44–48CrossRefGoogle Scholar
  21. Du, B., Pollard, R., and Elter, J. F. (2006b). CO–air bleed interaction and performance degradation study in proton exchange membrane fuel cells. ECS Trans. 3(1): 705–713CrossRefGoogle Scholar
  22. Du, B., Wang, G., Elter, J. F., Pollard, R., Jacobson, D. L., Hussey, D., Arif, M., and Eisman, G. (2006c). Applications of Neutron Radiography in PEM fuel cell Research and Development. The 8th World Conference on Neutron Radiography, Gaithersburg, MDGoogle Scholar
  23. Du, B., Guo, Q., Qi, Z., Mao, L., Pollard, R., and Elter, J. F. (2008). Chapter 12. Materials for Proton Exchange Membrane Fuel Cells. in R. H. Jones and G. J. Thomas. Materials for Hydrogen Economy. New York, Taylor & Francis: 251–309Google Scholar
  24. Eberle, K., Bernd, R., Joachim, S., and Raimund, S. (2002). Device and Method for Combined Purification and Compression of Hydrogen Containing CO and the Use Thereof in Fuel Cell Assemblies. US Patent No. 6,361,896Google Scholar
  25. Garzon, F., Uribe, F. A., Rockward, T., Urdampilleta, I. G., and Brosha, E. L. (2006). The impact of hydrogen fuel contaminates on long-term PMFC performance. ECS Trans. 3(1): 695–703CrossRefGoogle Scholar
  26. Gasteiger, H. A., Markovic, N. M., and Ross, P. N. (1995a). H2 and CO electrooxidation on well- characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J. Phys. Chem. 99(20): 8290–8301CrossRefGoogle Scholar
  27. Gasteiger, H. A., Markovic, N. M., and Ross, P. N. (1995b). H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 °C. J. Phys. Chem. 99(45): 16757–16767CrossRefGoogle Scholar
  28. Gottesfeld, S. D. (1990). Preventing CO poisoning in fuel cells. US Patent No. 4,910,099Google Scholar
  29. Gottesfeld, S. and Pafford, J. (1988). A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. J. Electrochem. Soc. 135(10): 2651–2652CrossRefGoogle Scholar
  30. Gu, T., Lee, W. K., Van Zee, J. W., and Murthy, M. (2004). Effect of reformate components on PEMFC performance. J. Electrochem. Soc. 151(12): A2100–A2105CrossRefGoogle Scholar
  31. Gu, T., Lee, W. K., and Van Zee, J. W. (2005). Quantifying the ‘reverse water gas shift’ reaction inside a PEM fuel cell. Appl. Catal. B 56(1–2): 43–50CrossRefGoogle Scholar
  32. Halseid, R., Wainright, J. S., Savinell, R. F., and Tunold, R. (2007). Oxidation of ammonium on platinum in acidic solutions. J. Electrochem. Soc. 154(2): B263–B270CrossRefGoogle Scholar
  33. Higashiguchi, S., Hirai, K., Shinke, N., Ibe, S., Yamazaki, O., Yasuhara, K., Hamabashiri, M., Koyama, Y. , and Tabata, T. (2003). Development of Residential PEFC Cogeneration Systems at Osaka Gas. 2003 Fuel Cell Seminar, Miami Beach, FL, Mira Digital Publishing, St. Louis, MOGoogle Scholar
  34. Ianniello, R., Schmidt, V. M., Stimming, U., Stumper, J., and Wallau, A. (1994). CO adsorption and oxidation on Pt and Pt–Ru alloys: dependence on substrate composition. Electrochim. Acta 39(11–12): 1863–1869CrossRefGoogle Scholar
  35. Jang, J. H., Han, S., Hyeon, T., and Oh, S. M. (2003). Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J. Power Sources 123(1): 79–85CrossRefGoogle Scholar
  36. Jimenez, S., Soler, J., Valenzuela, R. X., and Daza, L. (2005). Assessment of the performance of a PEMFC in the presence of CO. J. Power Sources 151: 69–73CrossRefGoogle Scholar
  37. Jusys, Z. and Behm, R. J. (2004). Simulated ‘air bleed’: Oxidation of adsorbed CO on carbon supported Pt. Part 2. Electrochemical measurements of hydrogen peroxide formation during O2 reduction in a double-disk electrode dual thin-layer flow cell. J. Phys. Chem. B. 108(23): 7893–7901CrossRefGoogle Scholar
  38. Jusys, Z., Kaiser, J., and Behm, R. J. (2003). Simulated ‘air bleed’: oxidation of adsorbed CO on carbon supported Pt. J. Electroanal. Chem. 554–555: 427–437CrossRefGoogle Scholar
  39. Karuppaiah, C. and Lakshmanan, B. (2003). Carbon Monoxide Filter. US Patent No. 6517963Google Scholar
  40. Kim, H. and Popov, B. N. (2002). Characterization of hydrous ruthenium oxide/carbon nanocom-posite supercapacitors prepared by a colloidal method. J. Power Sources 104(1): 52–61CrossRefGoogle Scholar
  41. Knights, S. D., Colbow, K. M., St-Pierre, J., and Wilkinson, D. P. (2004). Aging mechanisms and lifetime of PEFC and DMFC. J. Power Sources 127(1–2): 127–134CrossRefGoogle Scholar
  42. Lakshmanan, B. and Weidner, J. W. (2002). Electrochemical CO filtering of fuel-cell reformate. Electrochem. Solid-State Letts. 5: A267–A270CrossRefGoogle Scholar
  43. Lei, T., Zei, M. S., and Ertl, G. (2005). Electrocatalytic oxidation of CO on Pt-modified Ru(0001) electrodes. Surf. Sci. 581(2–3): 142–154CrossRefGoogle Scholar
  44. Lin, W. F., Iwasita, T., and Vielstich, W. (1999). Catalysis of CO electrooxidation at Pt, Ru, and PtRu alloy: An in situ FTIR study. J. Phys. Chem. B 103(16): 3250–3257CrossRefGoogle Scholar
  45. Little, A. D. (1994). Multi-Fuel Reformers for Fuel Cells Used in Transportation, Phase I, Final Report, Arthur D. Little, IncGoogle Scholar
  46. Mohtadi, R., Lee, W. K., Cowan, S., Van Zee, J. W., and Murthy, M. (2003). Effects of hydrogen sulfide on the performance of a PEMFC. Electrochem. Solid-State Letts. 6(12): A272–A274CrossRefGoogle Scholar
  47. Narusawa, K., Hayashida, M., Kamiya, Y. , Roppongi, H., Kurashima, D., and Wakabayashi, K. (2003). Deterioration in fuel cell performance resulting from hydrogen fuel containing impurities: poisoning effects by CO, CH4, HCHO and HCOOH. JSAE Review 24(1): 41–46CrossRefGoogle Scholar
  48. Oetjen, H. F., Schmidt, V. M., Stimming, U., and Trila, F. (1996). Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas. J. Electrochem. Soc. 143(12): 3838–3842CrossRefGoogle Scholar
  49. Paal, Z., Matusek, K., and Muhler, M. (1997). Sulfur adsorbed on Pt catalyst: Its chemical state and effect on catalytic properties as studied by electron spectroscopy and n-hexane test reactions. Appl. Catal. A 149(1): 113–132CrossRefGoogle Scholar
  50. Papageorgopoulos, D. C. and de Bruijn, F. A. (2002). Examining a Potential Fuel Cell Poison. J. Electrochem. Soc. 149(2): A140–A145CrossRefGoogle Scholar
  51. Pianca, M., Barchiesi, E., Esposto, G., and Radice, S. (1999). End groups in fluoropolymers. J. Fluorine Chem. 95(1–2): 71–84CrossRefGoogle Scholar
  52. Ralph, T. R. and Hogarth, M. P. (2002). Catalysis for low temperature fuel cell: Part II. The anode challenges. Platinum Metal Rev. 46(3): 117–135Google Scholar
  53. Ramani, M., Haran, B. S., White, R. E., and Popov, B. N. (2001a). Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. J. Electrochem. Soc. 148(4): A374–A380CrossRefGoogle Scholar
  54. Ramani, M., Haran, B. S., White, R. E., Popov, B. N., and Arsov, L. (2001b). Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J. Power Sources 93(1–2): 209–214CrossRefGoogle Scholar
  55. Santiago, E. I., Paganin, V. A., do Carmo, M., Gonzalez, E. R., and Ticianelli, E. A. (2005). Studies of CO tolerance on modified gas diffusion electrodes containing ruthenium dispersed on carbon. J. Electroanal. Chem. 575(1): 53–60CrossRefGoogle Scholar
  56. Saravanan, C., Dunietz, B. D., Markovic, N. M., Somorjai, G. A., Ross, P. N., and Head-Gordon, M. (2003). Electro-oxidation of CO on Pt-based electrodes simulated by electronic structure calculations. J. Electroanal. Chem. 554–555: 459–465CrossRefGoogle Scholar
  57. Schiraldi, D. A. (2006). Perfluorinated polymer electrolyte membrane durability. Polym. Rev. 46(3): 315CrossRefGoogle Scholar
  58. Schmidt, T. J. and Baurmeister, J. (2006). Durability and reliability in high-temperature reformed hydrogen PEFCs. ECS Trans. 3(1): 861–869CrossRefGoogle Scholar
  59. Schmidt, T. J., Noeske, M., Gasteiger, H. A., Behm, R. J., Britz, P., Brijoux, W., and Bonnemann, H. (1997). Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: Stripping voltammetry and rotating disk measurements. Langmuir 13(10): 2591–2595CrossRefGoogle Scholar
  60. Schmidt, T. J., Noeske, M., Gasteiger, H. A., Behm, R. J., Britz, P., and Bonnemann, H. (1998). PtRu alloy colloids as precursors for fuel cell catalysts. J. Electrochem. Soc. 145(3): 925–931CrossRefGoogle Scholar
  61. Schmidt, T. J., Gasteiger, H. A., and Behm, R. J. (1999). Rotating disk electrode measurements on the CO tolerance of a high-surface Area Pt/vulcan carbon fuel cell catalyst. J. Electrochem. Soc. 146(4): 1296–1304CrossRefGoogle Scholar
  62. Smolinka, T., Heinen, M., Chen, Y. X., Jusys, Z., Lehnert, W., and Behm, R. J. (2005). CO2 reduction on Pt electrocatalysts and its impact on H2 oxidation in CO2 containing fuel cell feed gas-A combined in situ infrared spectroscopy, mass spectrometry and fuel cell performance study. Electrochim. Acta 50(25–26): 5189–5199CrossRefGoogle Scholar
  63. Soto, H. J., Lee, W.-K., Van Zee, J. W., and Murthy, M. (2003). Effect of transient ammonia concentrations on PEMFC performance. Electrochem. Solid-State Letts. 6(7): A133–A135CrossRefGoogle Scholar
  64. Springer, T. E., Rockward, T., Zawodzinski, T. A., and Gottesfeld, S. (2001). Model for polymer electrolyte fuel cell operation on reformate feed: effects of CO, H2 dilution, and high fuel utilization. J. Electrochem. Soc. 148(1): A11–A23CrossRefGoogle Scholar
  65. Stamenkovic, V. , Grgur, B. N., Ross, P. N., and Markovic, N. M. (2005). Oxygen reduction reaction on Pt and Pt-bimetallic electrodes covered by CO. J. Electrochem. Soc. 152(2): A277–A282CrossRefGoogle Scholar
  66. 68.
    Staudt R., Boyer, J., and Elter, J. F. (2005). Development, design, and performance of high temperature fuel cell technology. Extended Abstracts for 2005 Fuel Cell Seminar, Palm Springs, CA, Courtesy Associates, Washington, DCGoogle Scholar
  67. Stetter, J. R. and Pan, L. (1994). Amperometric carbon monoxide sensor module for residential alarms US Patent No. 5331310Google Scholar
  68. Thomason, A. H., Lalk, T. R., and Appleby, A. J. (2004). Effect of current pulsing and ‘self-oxidation’ on the CO tolerance of a PEM fuel cell. J. Power Sources 135(1–2): 204–211CrossRefGoogle Scholar
  69. Tsiplakides, D., Balomenou, S., Katsaounis, A., Archonta, D., Koutsodontis, C., and Vayenas, C. G. (2005). Electrochemical promotion of catalysis: mechanistic investigations and monolithic electropromoted reactors. Catal. Today 100(1–2): 133–144CrossRefGoogle Scholar
  70. Uribe, F. A., Zawodzinski, J. T. A., and Gottesfeld, S. (2001). Abstract 339. The Impact of Hydrogen Fuel Contaminants on Long-Term PEMFC Performance. The 200th Electrochemical Society Meeting, San Francisco, CAGoogle Scholar
  71. Uribe, F. A., Gottesfeld, S., and Zawodzinski, J. T. A. (2002). Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance. J. Electrochem. Soc. 149(3): A293–A296CrossRefGoogle Scholar
  72. Urian, R. C., Gulla, A. F., and Mukerjee, S. (2003). Electrocatalysis of reformate tolerance in proton exchange membranes fuel cells: Part I. J. Electroanal. Chem. 554–555: 307–324CrossRefGoogle Scholar
  73. Uribe, F. A., Valerio, J. A., Garzon, F. H., and Zawodzinski, T. A. (2004). PEMFC reconfigured anodes for enhancing CO tolerance with air bleed. Electrochem. Solid-State Letts. 7(10): A376–A379CrossRefGoogle Scholar
  74. Vielstich, W., Lamm, A., and Gasteiger, H. A., Eds. (2003). Handbook of Fuel Cells: Fundamentals, Technology, and Applications. West Sussex, England, WileyGoogle Scholar
  75. Wang, K., Gasteiger, H. A., Markovic, N. M., and Ross, P. N. (1996). On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt–Sn alloy versus Pt–Ru alloy surfaces Electrochim. Acta 41(16): 2587–2593Google Scholar
  76. Wang, Y. , Yan, H., and Wang, E. F. (2001). The electrochemical oxidation and the quantitative determination of hydrogen sulfide on a solid polymer electrolyte-based system. J. Electroanal. Chem. 497(1–2): 163–167CrossRefGoogle Scholar
  77. Wang, W., Van Zee, J. W., and Lee, W. K. (2006). The effect of N2 dilution on CO poisoning in a proton exchange membrane fuel cell. ECS Trans. 1(6): 541–547CrossRefGoogle Scholar
  78. Zhang, J. and Datta, R. (2002). Sustained potential oscillations in proton exchange membrane fuel cells with PtRu as anode catalyst. J. Electrochem. Soc. 149(11): A1423–A1431CrossRefGoogle Scholar
  79. Zhang, J. and Datta, R. (2004). Higher power output in a PEMFC operating under autonomous oscillatory conditions in the presence of CO. Electrochem. Solid-State Letts. 7(3): A37–A40CrossRefGoogle Scholar
  80. Zhang, J. and Datta, R. (2005). Electrochemical preferential oxidation of CO in reformate. J. Electrochem. Soc. 152(6): A1180–A1187CrossRefGoogle Scholar
  81. Zhang, J., Fehribach, J. D., and Datta, R. (2004). Mechanistic and bifurcation analysis of anode potential oscillations in PEMFCs with CO in anode feed. J. Electrochem. Soc. 151(5): A689–A697CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bin Du
    • 1
  • Richard Pollard
    • 2
  • John F. Elter
    • 3
  • Manikandan Ramani
    • 1
  1. 1.Plug Power Inc.LathamUSA
  2. 2.Shell Exploration & Production Co., Bellaire Technology CentreHoustonUSA
  3. 3.Empire Innovation Professor of Nanoengineering & Executive Director Center for Sustainable Ecosystem Nanotechnologies, College of Nanoscale Science and EngineeringState University of New York at AlbanyAlbanyNew York

Personalised recommendations