Commercialization of the proton exchange membrane fuel cell, an efficient energy-conversion device, requires additional gains in system lifetime. Contamination represents a key degradation mode. Its status is summarized and analyzed to identify research needs. Contaminant sources include ambient air, system components located upstream of the fuel cell stack, and fuel and coolant loops. The number of reported contaminants was conservatively estimated at 97, but many contaminant compositions are still unclear and many gaps remain to be explored, including airstream system components and coolant and fuel streams. For the latter cases, contaminants may reach the cathode compartment by diffusion through the membrane or as a result of seal or bipolar plate failure, thus representing potential interaction sources. In view of this large potential inventory of contaminants, recommendations were made to accelerate studies, including the addition of identification tests performed by material developers, development of standard tests, and definition of an exposure scale for ranking purposes. Because anions are excluded from the membrane in contact with weak solutions (Donnan exclusion), mechanisms involving anions need to be reevaluated. Contaminant mechanisms were synthesized, resulting in only eight separate cases. This situation favors the development of two key simple mathematical models addressing kinetic and ohmic performance losses that are expected to positively impact the development of test plans, data analysis, model parameter extraction, contaminant classification (use of apparent rate constants), and hypothetical scenario evaluation. Many mitigation strategies were recorded (41) and were downselected by elimination of untimely material-based solutions. The remaining strategies were grouped into three generic approaches requiring further quantitative evaluation and optimization: cathode compartment wash, cathode potential variations, and manufacturing material and processing specifications.


Fuel Cell Polymer Electrolyte Proton Exchange Membrane Fuel Cell Bipolar Plate Fuel Cell System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, S.-Y., Shin, S.-J., Ha, H. Y., Hong, S.-A., Lee, Y.-C., Lim, T. W. and Oh. I.-H. (2002)Performance and lifetime analysis of the kW-class PEMFC stack. J. Power Sources 106, 295–303CrossRefGoogle Scholar
  2. Antolini, E., Salgado, J. R. C. and Gonzalez, E. R. (2006) The stability of Pt-M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells – Aliterature review and tests on a Pt-Co catalyst. J. Power Sources 160, 957–968CrossRefGoogle Scholar
  3. Aoki, M., Uchida, H. and Watanabe, M. (2006) Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochem. Commun. 8, 1509–1513CrossRefGoogle Scholar
  4. Ball, S. C., Hudson, S. L., Thompsett, D. and Theobald, B. (2007) An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures. J. Power Sources 171, 18–25CrossRefGoogle Scholar
  5. Bétournay, M. C., Bonnell, G., Edwardson, E., Paktunc, D., Kaufman, A. and Lomma, A. T.(2004) The effects of mine conditions on the performance of a PEM fuel cell. J. Power Sources 134, 80–87CrossRefGoogle Scholar
  6. Bhugun, I. and Anson, F. C. (1997) A generalized treatment of the dynamics of the adsorption of Langmuirian systems at stationary or rotating disk electrodes. J. Electroanal. Chem.439, 1–6CrossRefGoogle Scholar
  7. Bi, W., Gray, G. E. and Fuller, T. F. (2007) PEM fuel cell Pt/C dissolution and deposition in Nafion electrolyte. Electrochem. Solid-State Lett. 10, B101–B104CrossRefGoogle Scholar
  8. Bosnjakovic, A. and Schlick, S. (2004) Nafion perfluorinated membranes treated in Fenton media:Radical species detected by ESR spectroscopy. J. Phys. Chem. B. 108, 4332–4337CrossRefGoogle Scholar
  9. Brady, M. P., Weisbrod, K., Paulauskas, I., Buchanan, R. A., More, K. L., Wang, H., Wilson, M.,Garzon, F. and Walker L. R. (2004) Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates. Scripta Materialia 50, 1017–1022CrossRefGoogle Scholar
  10. Brady, M. P., Yang, B., Wang, H., Turner, J. A., More, K. L., Wilson, M. and Garzon, F. (2006) The formation of protective nitride surfaces for PEM fuel cell metallic bipolar plates. JOM 58, 50–57CrossRefGoogle Scholar
  11. Cai, M., Ruthkosky, M. S., Merzougui, B., Swathirajan, S., Balogh, M. P. and Oh, S. H. (2006)Investigation of thermal and electrochemical degradation of fuel cell catalysts. J. Power Sources 160, 977–986CrossRefGoogle Scholar
  12. Chaparro, A. M., Mueller, N., Atienza, C. and Daza, L. (2006) Study of electrochemical instabilities of PEMFC electrodes in aqueous solution by means of membrane inlet mass spectrometry.J. Electroanal. Chem. 591, 69–73CrossRefGoogle Scholar
  13. Chen, F., Su, Y.-G., Soong, C.-Y., Yan, W.-M. and Chu, H.-S. (2004) Transient behavior of water transport in the membrane of a PEM fuel cell. J. Electroanal. Chem. 566, 85–93CrossRefGoogle Scholar
  14. Cheng, X., Shi, Z., Glass, Z., Zhang, L., Zhang, J., Song, D., Liu, Z.-S., Wang, H. and Shen, J.(2007) A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources 165, 739–756CrossRefGoogle Scholar
  15. Cleghorn, S. J. C., Mayfield, D. K., Moore, D. A., Moore, J. C., Rusch, G., Sherman, T. W.,Sisofo, N. T. and Beuscher, U. (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J. Power Sources 158, 446–454CrossRefGoogle Scholar
  16. Colón-Mercado, H. R. and Popov, B. N. (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J. Power Sources 155, 253–263Google Scholar
  17. Cunningham, N., Guay, D., Dodelet, J. P., Meng, Y., Hlil, A. R. and Hay, A. S. (2002) New materials and procedures to protect metallic PEM fuel cell bipolar plates. J. Electrochem. Soc. 149,A905–A911CrossRefGoogle Scholar
  18. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. and Tisack, M. E. (2004) Advanced materials for improved PEMFC performance and life. J. Power Sources 131, 41–48CrossRefGoogle Scholar
  19. Dam, V. A. T. and de Bruijn, F. A. (2007) The stability of PEMFC electrodes – Platinum dissolution vs potential and temperature investigated by quartz crystal microbalance. J. Electrochem.Soc. 154, B494–B499CrossRefGoogle Scholar
  20. Darling, R. M. and Meyers, J. P. (2003) Kinetic model of platinum dissolution in PEMFCs.J. Electrochem. Soc. 150, A1523–A1527CrossRefGoogle Scholar
  21. Darling R. M. and Meyers, J. P. (2005) Mathematical model of platinum movement in PEM fuel cells. J. Electrochem. Soc. 152, A242–A247CrossRefGoogle Scholar
  22. Davies, D. P., Adcock, P. L., Turpin, M. and Rowen, S. J. (2000a) Bipolar plate materials for solid polymer fuel cells. J. Appl. Electrochem. 30, 101–105CrossRefGoogle Scholar
  23. Davies, D. P., Adcock, P. L., Turpin, M. and Rowen, S. J. (2000b) Stainless steel as a bipolar plate material for solid polymer fuel cells. J. Power Sources 86, 237–242CrossRefGoogle Scholar
  24. Ferreira, P. J., la O', G. J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S. and Gasteiger, H.A. (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – A mechanistic investigation. J. Electrochem. Soc. 152, A2256–A2271CrossRefGoogle Scholar
  25. Franco, A. A. and Tembely, M. (2007) Transient multiscale modeling of aging mechanisms in a PEFC cathode. J. Electrochem. Soc. 154, B712–B723CrossRefGoogle Scholar
  26. Fu, Y., Hou, M., Yan, X., Hou, J., Luo, X., Shao, Z. and Yi, B. (2007) Research progress of aluminum alloy endplates for PEMFCs. J. Power Sources 166, 435–440CrossRefGoogle Scholar
  27. Gancs, L., Hult, B. N., Hakim, N. and Mukerjee, S. (2007) The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochem. Solid-State Lett. 10,B150–B154CrossRefGoogle Scholar
  28. Garsany, Y., Baturina, O. A. and Swider-Lyons, K. E. (2007) Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts. J. Electrochem. Soc. 154,B670–B675CrossRefGoogle Scholar
  29. Gasteiger, H. A., Kocha, S. S., Sompalli, B. and Wagner, F. T. (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal.B 56, 9–35CrossRefGoogle Scholar
  30. Guilminot, E., Corcella, A., Charlot, F., Maillard, F. and Chatenet, M. (2007a) Detection of Ptz+ions and Pt nanoparticles inside the membrane of a used PEMFC. J. Electrochem. Soc. 154,B96–B105CrossRefGoogle Scholar
  31. Guilminot, E., Corcella, A., Chatenet, M., Maillard, F., Charlot, F., Berthomé, G., Iojoiu, C.,Sanchez, J.-Y., Rossinot, E. and Claude, E. (2007b) Membrane and active layer degradation upon PEMFC steady-state operation I. Platinum dissolution and redistribution within the MEA. J. Electrochem. Soc. 154, B1106–B1114CrossRefGoogle Scholar
  32. Gülzow, E., Schulze, M. and Steinhilber, G. (2002) Investigation of the degradation of different nickel anode types for alkaline fuel cells (AFCs). J. Power Sources 106, 126–135CrossRefGoogle Scholar
  33. Gülzow, E., Schulze, M., Wagner, N., Kaz, T., Reissner, R., Steinhilber, G. and Schneider, A.(2000) Dry layer preparation and characterization of polymer electrolyte fuel cell components.J. Power Sources 86, 352–362CrossRefGoogle Scholar
  34. Halseid, R., Vie, P. J. S. and Tunold, R. (2004) Influence of ammonium on conductivity and water content of Nafion 117 membranes. J. Electrochem. Soc. 151, A381–A388CrossRefGoogle Scholar
  35. Halseid, R., Bystroň,T. and Tunold, R. (2006a) Oxygen reduction on platinum in aqueous sulphuric acid in the presence of ammonium. Electrochim. Acta 51, 2737–2742CrossRefGoogle Scholar
  36. Halseid, R., Vie, P. J. S. and Tunold, R. (2006b) Effect of ammonia on the performance of polymer electrolyte membrane fuel cells. J. Power Sources 154, 343–350CrossRefGoogle Scholar
  37. Halseid, R., Wainright, J. S., Savinell, R. F. and Tunold, R. (2007) Oxidation of ammonium on platinum in acidic solutions. J. Electrochem. Soc. 154, B263–B270CrossRefGoogle Scholar
  38. Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, M., Gasteiger, H. and Abbott, J.(2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5, 302–308CrossRefGoogle Scholar
  39. Helfferich, F. (1962) Ion exchange. McGraw-Hill, New YorkGoogle Scholar
  40. Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R. and McGrath, J. E. (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612CrossRefGoogle Scholar
  41. Imamura, D., Akai, M. and Watanabe, S. (2005) Exploration of hydrogen odorants for fuel cell vehicles. J. Power Sources 152, 226–232CrossRefGoogle Scholar
  42. Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A. and Ogumi, Z. (2006) Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 51, 5746–5753CrossRefGoogle Scholar
  43. Iojoiu, C., Guilminot, E., Maillard, F., Chatenet, M., Sanchez, J.-Y., Claude, E. and Rossinot, E.(2007) Membrane and active layer degradation following PEMFC steady-state operation II.Influence of Ptz+ on membrane properties. J. Electrochem. Soc. 154, B1115–B1120CrossRefGoogle Scholar
  44. Iyer, S. T., Nandan, D. and Venkataramani, B. (1996) Alkaline earth metal ion-proton-exchange equilibria on Nafion-117 and Dowex 50W X8 in aqueous solutions at 298±1 K. React. Funct.Polym. 29, 51–57CrossRefGoogle Scholar
  45. Jing, F., Hou, M., Shi, W., Fu, J., Yu, H., Ming, P. and Yi, B. (2007) The effect of ambient contamination on PEMFC performance. J. Power Sources 166, 172–176CrossRefGoogle Scholar
  46. Kadirov, M. K., Bosnjakovic, A. and Schlick, S. (2005) Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated Nafion and Dow ionomers: Effect of counterions and H2O2. J. Phys. Chem. B 109, 7664–7670CrossRefGoogle Scholar
  47. Kelly, M. J., Egger, B., Fafilek, G., Besenhard, J. O., Kronberger, H. and Nauer, G. E. (2005a)Conductivity of polymer electrolyte membranes by impedance spectroscopy with microelec-trodes. Solid State Ionics 176, 2111–2114CrossRefGoogle Scholar
  48. Kelly, M. J., Fafilek, G., Besenhard, J. O., Kronberger, H. and Nauer, G. E. (2005b) Contaminant absorption and conductivity in polymer electrolyte membranes. J. Power Sources 145, 249–252CrossRefGoogle Scholar
  49. Kennedy, D. M., Cahela, D. R., Zhu, W. H., Westrom, K. C., Nelms, R. M. and Tatarchuk, B. J.(2007) Fuel cell cathode air filters: Methodologies for design and optimization. J. Power Sources 168, 391–399CrossRefGoogle Scholar
  50. Kinumoto, T., Inaba, M., Nakayamaa, Y., Ogata, K., Umebayashi, R., Tasaka, A., Iriyama, Y.,Abe, T. and Ogumi, Z. (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources 158, 1222–1228CrossRefGoogle Scholar
  51. Koh, S., Leisch, J., Toney, M. F. and Strasser, P. (2007) Structure-activity-stability relationships of Pt–Co alloy electrocatalysts in gas-diffusion electrode layers. J. Phys. Chem. C 111, 3744–3752CrossRefGoogle Scholar
  52. Laporta, M., Pegoraro, M. and Zanderighi, L. (2000) Recast Nafion-117 thin film from water solution. Macromol. Mater. Eng. 282, 22–29CrossRefGoogle Scholar
  53. Lebedeva, N. P. and Janssen, G. J. M. (2005) On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells. Electrochim. Acta 51, 29–40CrossRefGoogle Scholar
  54. Lehmani, A., Turq, P., Périé, M., Périé, J. and Simonin, J.-P. (1997) Ion transport in Nafion 117 membrane. J. Electroanal. Chem. 428, 81–89CrossRefGoogle Scholar
  55. Liu, D. and Case, S. (2006) Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile. J. Power Sources 162, 521–531CrossRefGoogle Scholar
  56. Liu, W. and Zuckerbrod, D. (2005) In situ detection of hydrogen peroxide in PEM fuel cells. J.Electrochem. Soc. 152, A1165–A1170CrossRefGoogle Scholar
  57. Liu, W., Ruth, K. and Rusch, G. (2001) Membrane durability in PEM fuel cells. J. New Mater.Electrochem. Syst. 4, 227–232Google Scholar
  58. Ma, L., Warthesen, S. and Shores, D. A. (2000) Evaluation of materials for bipolar plates in PEMFCs. J. New Mater. Electrochem. Syst. 3, 221–228Google Scholar
  59. Ma, X., Yang, D., Zhou, W., Zhang, C., Pan, X., Xu, L., Wu, M. and Ma, J. (2008) Evaluation of activated carbon adsorbent for fuel cell cathode air filtration. J. Power Sources 175, 383–389CrossRefGoogle Scholar
  60. Maass, S., Finsterwalder, F., Frank, G., Hartmann, R. and Merten, C. (2008) Carbon support oxidation in PEM fuel cell cathodes. J. Power Sources, 176, 444–451CrossRefGoogle Scholar
  61. Makkus, R. C., Janssen, A. H. H., de Bruijn, F. A. and Mallant, R. K. A. M. (2000) Use of stainless steel for cost competitive bipolar plates in the SPFC. J. Power Sources 86, 274–282CrossRefGoogle Scholar
  62. Masten, D. A. and Bosco, A. D. (2003) System design for vehicle applications: GM/Opel. In:Vielstich, W., Gasteiger, H. and Lamm, A. (Ed.), Handbook of Fuel Cells – Fundamentals,Technology and Applications, Vol. 4 – Fuel Cell Technology and Applications, Part 3. Wiley,Chichester, West Sussex, England, pp. 714–724Google Scholar
  63. Mikkola, M. S., Rockward, T., Uribe, F. A. and Pivovar, B. S. (2007) The effect of NaCl in the cathode air stream on PEMFC performance. Fuel Cells 7, 153–158CrossRefGoogle Scholar
  64. Mitsushima, S., Kahawara, S., Ota, K.-i. and Kamiya, N. (2007) Consumption rate of Pt under potential cycling. J. Electrochem. Soc. 154, B153–B158CrossRefGoogle Scholar
  65. Mittal, V. O., Kunz, H. R. and Fenton, J. M. (2006) Is H2O2 involved in the membrane degradation mechanism in PEMFC?. Electrochem. Solid-State Lett. 9, A299–A302CrossRefGoogle Scholar
  66. Mittal, V. O., Kunz, H. R. and Fenton, J. M. (2007) Membrane degradation mechanisms in PEMFCs. J. Electrochem. Soc. 154, B652–B656CrossRefGoogle Scholar
  67. Mohtadi, R., Lee, W.-K. and Van Zee, J. W. (2004) Assessing durability of cathodes exposed to common air impurities. J. Power Sources 138, 216–225CrossRefGoogle Scholar
  68. Moore, J. M., Adcock, P. L., Lakeman, J. B. and Mepsted, G. O. (2000) The effects of battlefield contaminants on PEMFC performance. J. Power Sources 85, 254–260CrossRefGoogle Scholar
  69. Narusawa, K., Hayashida, M., Kamiya, Y., Roppongi, H., Kurashima, D. and Wakabayashi, K.(2003) Deterioration in fuel cell performance resulting from hydrogen fuel containing impurities: poisoning effect of CO, CH4, HCHO and HCOOH. JSAE Rev. 24, 41–46CrossRefGoogle Scholar
  70. Ohma, A., Suga, S., Yamamoto, S. and Shinohara, K. (2007) Membrane degradation behavior during open-circuit voltage hold test. J. Electrochem. Soc. 154, B757–B760CrossRefGoogle Scholar
  71. Okada, T. (1999) Theory for water management in membranes for polymer electrolyte fuel cells – Part 2. The effect of impurity ions at the cathode side on the membrane performances.J. Electroanal. Chem. 465, 18–29Google Scholar
  72. Okada, T. (2003) Effect of ionic contaminants. In: Vielstich, W., Gasteiger, H. and Lamm, A.(Ed.), Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3 – Fuel Cell Technology and Applications, Part 1. Wiley, Chichester, West Sussex, England, pp.627–646Google Scholar
  73. Okada, T., Nakamura, N., Yuasa, M. and Sekine, I. (1997) Ion and water transport characteristics in membranes for polymer electrolyte fuel cells containing H+ and Ca+2 cations. J. Electrochem.Soc. 144, 2744–2750CrossRefGoogle Scholar
  74. Okada, T., Møller-Holst, S., Gorseth, O. and Kjelstrup, S. (1998a) Transport and equilibrium properties of Nafion membranes with H+ and Na+ ions. J. Electroanal. Chem. 442, 137–145CrossRefGoogle Scholar
  75. Okada, T., Xie, G., Gorseth, O., Kjelstrup, S., Nakamura, N. and Arimura, T. (1998b) Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim. Acta 43, 3741–3747CrossRefGoogle Scholar
  76. Okada, T., Xie, G. and Meeg, M. (1998c) Simulation for water management in membranes for polymer electrolyte fuel cells. Electrochim. Acta 43, 2141–2155CrossRefGoogle Scholar
  77. Okada, T., Ayato, Y., Yuasa, M. and Sekine, I. (1999a) The effect of impurity cations on the transport characteristics of perfluorosulfonated ionomer membranes. J. Phys. Chem. B 103, 3315–3322CrossRefGoogle Scholar
  78. Okada, T., Dale, J., Ayato, Y., Asbjørnsen, O. A., Yuasa, M. and Sekine, I. (1999b) Unprecedented affect of impurity cations on the oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer. Langmuir 15, 8490–8496CrossRefGoogle Scholar
  79. Okada, T., Ayato, Y., Dale, J., Yuasa, M., Sekine, I. and Asbjørnsen, O. A. (2000) Oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer in the presence of impurity cations Fe3+, Ni2+ and Cu2+. Phys. Chem. Chem. Phys. 2, 3255–3261CrossRefGoogle Scholar
  80. Okada, T., Ayato, Y., Satou, H. Yuasa, M. and Sekine, I. (2001) The effect of impurity cations on the oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer. J.Phys. Chem. B 105, 6980–6986CrossRefGoogle Scholar
  81. Okada, T., Satou, H. and Yuasa, M. (2003) Effects of additives on oxygen reduction kinetics at the interface between platinum and perfluorinated ionomer. Langmuir 19, 2325–2332CrossRefGoogle Scholar
  82. Panchenko, A., Dilger, H., Kerres, J., Hein, M., Ullrich, A., Kaz, T. and Roduner, E. (2004) In-situ spin trap electron paramagnetic resonance study of fuel cell processes. Phys. Chem. Chem.Phys. 6, 2891–2894CrossRefGoogle Scholar
  83. Pourcelly, G., Oikonomou, A., Gavach, C. and Hurwitz, H. D. (1990) Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes.J. Electroanal. Chem. 287, 43–59CrossRefGoogle Scholar
  84. Pourcelly, G., Sistat, P., Chapotot, A., Gavach, C. and Nikonenko, V. (1996) Self diffusion and conductivity in Nafion membranes in contact with NaCl + CaCl2 solutions. J. Membr. Sci. 110, 69–78CrossRefGoogle Scholar
  85. Pozio, A., Silva, R. F., De Francesco, M. and Giorgi, L. (2003) Nafion degradation in PEFCs from end plate iron contamination. Electrochim. Acta 48, 1543–1549CrossRefGoogle Scholar
  86. Qiao, J., Saito, M., Hayamizu, K. and Okada, T. (2006) Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J. Electrochem. Soc. 153,A967–A974CrossRefGoogle Scholar
  87. Reiser, C. A., Bregoli, L., Patterson, T. W., Yi, J. S., Yang, J. D., Perry, M. L. and Jarvi, T. D.(2005) A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett. 8,A273–A276CrossRefGoogle Scholar
  88. Roen, L. M., Paik, C. H. and Jarvi, T. D. (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid-State Lett. 7, A19–A22CrossRefGoogle Scholar
  89. Samec, Z., Trojánek, A., Langmaier, J. and Samcová, E. (1997) Diffusion coefficients of alkali metal cations in Nafion from ion-exchange measurements – An advanced kinetic model.J. Electrochem. Soc. 144, 4236–4242CrossRefGoogle Scholar
  90. Schmidt, T. J., Paulus, U. A., Gasteiger, H. A. and Behm, R. J. (2001) The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J. Electroanal. Chem.508, 41–47CrossRefGoogle Scholar
  91. Schmitz, A., Wagner, S., Hahn, R., Uzun, H. and Hebling, C. (2004) Stability of planar PEMFC in printed circuit board technology. J. Power Sources 127, 197–205CrossRefGoogle Scholar
  92. Schulze, M. and Christenn, C. (2005) XPS investigation of the PTFE induced hydrophobic properties of electrodes for low temperature fuel cells. Appl. Surf. Sci. 252, 148–153CrossRefGoogle Scholar
  93. Schulze, M., Gülzow, E. and Steinhilber, G. (2001) Activation of nickel-anodes for alkaline fuel cells. Appl. Surf. Sci. 179, 251–256CrossRefGoogle Scholar
  94. Schulze, M., Knöri, T., Schneider, A. and Gülzow, E. (2004) Degradation of sealings for PEFC test cells during fuel cell operation. J. Power Sources 127, 222–229CrossRefGoogle Scholar
  95. Schulze, M., Wagner, N., Kaz, T. and Friedrich, K. A. (2007) Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells. Electrochim. Acta 52, 2328–2336CrossRefGoogle Scholar
  96. Seo, A., Lee, J., Han, K. and Kim, H. (2006) Performance and stability of Pt-based ternary alloy catalysts for PEMFC. Electrochim. Acta 52, 1603–1611CrossRefGoogle Scholar
  97. Sethuraman, V. A., Weidner, J. W. and Protsailo, L. V. (2007) Effect of diphenyl siloxane on the catalytic activity of Pt on carbon. Electrochem. Solid-State Lett. 10, B207–B209CrossRefGoogle Scholar
  98. Shi, M. and Anson, F. C. (1997) Dehydration of protonated Nafion coatings induced by cation exchange and monitored by quartz crystal microgravimetry. J. Electroanal. Chem. 425, 117–123CrossRefGoogle Scholar
  99. Silva, R. F. and Pozio, A. (2007) Corrosion study on different types of metallic bipolar plates for polymer electrolyte membrane fuel cells. J. Fuel Cell Sci. Technol. 4, 116–122CrossRefGoogle Scholar
  100. Smotkin, E. S. and Díaz-Morales, R. R. (2003) New electrocatalysts by combinatorial methods.Annu. Rev. Mater. Res. 33, 557–579CrossRefGoogle Scholar
  101. St-Pierre, J. and Wilkinson, D. P. (2001) Fuel cells: A new, efficient and cleaner power source.AIChE. J. 47, 1482–1486CrossRefGoogle Scholar
  102. St-Pierre, J. and Jia, N. (2002) Successful demonstration of Ballard PEMFCs for space shuttle applications. J. New Mater. Electrochem. Syst. 5, 263–271Google Scholar
  103. St-Pierre, J., Jia, N. and Rahmani, R. (2008) Proton exchange membrane fuel cell contamination model – Competitive adsorption demonstrated with NO2. J. Electrochem. Soc. 155, B315–B320CrossRefGoogle Scholar
  104. St-Pierre, J., Wilkinson, D. P., Knights, S. and Bos, M. (2000) Relationships between water management, contamination and lifetime degradation in PEFC. J. New Mater. Electrochem.Syst. 3, 99–106Google Scholar
  105. St-Pierre, J., Roberts, J., Colbow, K., Campbell, S. and Nelson, A. (2005) PEMFC operational and design strategies for sub zero environments. J. New Mater. Electrochem. Syst. 8, 163–176Google Scholar
  106. Sung, Y.-E., Chrzanowski, W., Zolfaghari, A., Jerkiewicz, G. and Wieckowski, A. (1997) Structure of chemisorbed sulfur on a Pt(111) electrode. J. Am. Chem. Soc. 119, 194–200CrossRefGoogle Scholar
  107. Swider, K. E. and Rolison, D. R. (1996) The chemical state of sulfur in carbon-supported fuel-cell electrodes. J. Electrochem. Soc. 143, 813–819CrossRefGoogle Scholar
  108. Swider, K. E. and Rolison, D. R. (1999) Catalytic desulfurization of carbon black on a platinum oxide electrode. Langmuir 15, 3302–3306CrossRefGoogle Scholar
  109. Swider, K. E. and Rolison, D. R. (2000) Reduced poisoning of platinum fuel-cell electrocatalysts supported on desulfurized carbon. Electrochem. Solid-State Lett. 3, 4–6CrossRefGoogle Scholar
  110. Tandon, R. and Pintauro, P. N. (1997) Divalent/monovalent cation uptake selectivity in a Nafion cation-exchange membrane: experimental and modeling studies. J. Membr. Sci. 136, 207–219CrossRefGoogle Scholar
  111. Tan, J., Chao, Y. J., Van Zee, J. W. and Lee, W.-K. (2007) Degradation of elastomeric gasket materials in PEM fuel cells. Mater. Sci. Eng. A, 445–446, 669–675Google Scholar
  112. Tawfik, H., Hung, Y. and Mahajan, D. (2007) Metal bipolar plates for PEM fuel cell – A review. J. Power Sources 163, 755–767CrossRefGoogle Scholar
  113. Teranishi, K., Kawata, K., Tsushima, S. and Hirai, S. (2006) Degradation mechanism of PEMFC under open circuit operation. Electrochem. Solid-State Lett. 9, A475–A477CrossRefGoogle Scholar
  114. Trogadas, P. and Ramani, V. (2007) Pt/C/MnO2 hybrid electrocatalysts for degradation mitigation in polymer electrolyte fuel cells. J. Power Sources 174, 159–163CrossRefGoogle Scholar
  115. Uribe, F. A. Gottesfeld, S. and Zawodzinski, T. A. (2002) Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance. J. Electrochem. Soc. 149,A293–A296CrossRefGoogle Scholar
  116. Wan, L.-J., Moriyama, T., Ito, M., Uchida, H., and Watanabe, M. (2002) In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution.Chem. Commun. 58–59Google Scholar
  117. Wang, Y. and Northwood, D. O. (2006) An investigation on metallic bipolar plate corrosion in simulated anode and cathode environments of PEM fuel cells using potential-pH diagrams. Int.J. Electrochem. Sci. 1, 447–455Google Scholar
  118. Wang, Y. and Northwood, D. O. (2007) An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments. Int. J. Hydrogen Energy 32, 895–902CrossRefGoogle Scholar
  119. Wang, H., Sweikart, M. A. and Turner J. A. (2003) Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources 115, 243–251CrossRefGoogle Scholar
  120. Wang, X., Kumar, R. and Myers, D. J. (2006) Effect of voltage on platinum dissolution –Relevance to polymer electrolyte fuel cells. Electrochem. Solid-State Lett. 9, A225–A227CrossRefGoogle Scholar
  121. Wang, H., Turner, J. A., Li, X. and Bhattacharya, R. (2007) SnO2:F coated austenite stainless steels for PEM fuel cell bipolar plates. J. Power Sources 171, 567–574CrossRefGoogle Scholar
  122. Wind, J., Späh, R., Kaiser, W. and Böhm, G. (2002) Metallic bipolar plates for PEM fuel cells.J. Power Sources 105, 256–260CrossRefGoogle Scholar
  123. Xie, G. and Okada, T. (1995) Water transport behavior in Nafion 117 membranes. J. Electrochem.Soc. 142, 3057–3062CrossRefGoogle Scholar
  124. Xie, G. and Okada, T. (1996) Pumping effects in water movement accompanying cation transport across Nafion 117 membranes. Electrochim. Acta 41, 1569–1571CrossRefGoogle Scholar
  125. Xie, J., Wood III, D. L., Wayne, D. M., Zawodzinski, T. A., Atanassov, P. and Borup, R. L. (2005)Durability of PEFCs at high humidity conditions. J. Electrochem. Soc. 152, A104–A113CrossRefGoogle Scholar
  126. Xing, D., Zhang, H., Wang, L., Zhai, Y. and Yi, B. (2007) Investigation of the Ag-SiO2/sulfonated poly(biphenyl ether sulfone) composite membranes for fuel cell. J. Membr. Sci. 296, 9–14CrossRefGoogle Scholar
  127. Yadav, A. P., Nishikata, A. and Tsuru, T. (2007) Effect of halogen ions on platinum dissolution under potential cycling in 0.5 M H2SO4 solution. Electrochim. Acta 52, 7444–7452CrossRefGoogle Scholar
  128. Yang, D., Ma, J., Xu, L., Wu, M. and Wang, H. (2006) The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell. Electrochim. Acta 51, 4039–4044CrossRefGoogle Scholar
  129. Yasuda, K., Taniguchi, A., Akita, T., Ioroi, T. and Siroma, Z. (2006) Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. Phys. Chem. Chem. Phys. 8, 746–752CrossRefGoogle Scholar
  130. Yu, P., Pemberton, M. and Plasse, P. (2005) PtCo/C cathode catalyst for improved durability in PEMFCs. J. Power Sources 144, 11–20CrossRefGoogle Scholar
  131. Zaluski, C. S. and Xu, G. (1994) AC impedance and conductivity study of alkali salt form per-fluorosulfonate ionomer membranes. J. Electrochem. Soc. 141, 448–451CrossRefGoogle Scholar
  132. Zeng, R., Pang, Z. and Zhu, H. (2000) Modification of a Nafion ion exchange membrane by a plasma polymerization process. J. Electroanal. Chem. 490, 102–106CrossRefGoogle Scholar
  133. Zhang, J., Litteer, B. A., Gu, W., Liu, H. and Gasteiger, H. A. (2007) Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs. J. Electrochem.Soc. 154, B1006–B1011CrossRefGoogle Scholar
  134. Zhang, J., Wang, H., Wilkinson, D. P., Song, D., Shen, J. and Liu, Z.-S. (2005) Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities. J. Power Sources 147, 58–71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jean St-Pierre
    • 1
  1. 1.Department of Chemical EngineeringUniversity of South CarolinaUSA

Personalised recommendations