Advertisement

Direct Methanol Fuel Cell Durability

  • Yu Seung Kim
  • Piotr Zelenay

Abstract

This chapter provides an overview of performance durability issues typically occurring in the direct methanol fuel cell (DMFC), in both single cells and short DMFC stacks. The focus of this chapter is on those sources of performance degradation that have been recognized as impacting DMFC operation in a major way (1) the loss of cathode activity due to surface oxide (hydroxide) formation, (2) ruthenium crossover from the anode to the cathode through the proton-conducting membrane, and (3) membrane–electrode interface degradation. Much attention is devoted to the interpretation of performance losses observed during extended operation of DMFCs under “realistic” DMFC operating conditions, including high-voltage cell operation. A separation of the anode and cathode performance losses is attempted whenever possible. Also addressed in this chapter are various methods of mitigating DMFC performance losses, either at the stage of membrane–electrode assembly design and fabrication or in an operating fuel cell.

Keywords

Fuel Cell Oxygen Reduction Reaction Catalyst Layer Performance Loss Proton Exchange Membrane Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angerstein-Kozlowska, H., MacDougall, B. and Conway, B.E. (1973) Origin of activation effects of acetonitrile and mercury in electrocatalytic oxidation of formic acid. J. Electrochem. Soc. 120, 756–766.CrossRefGoogle Scholar
  2. Antolini, E. (2003) Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J. Mater. Sci. 38, 2995–3005.CrossRefGoogle Scholar
  3. Arico, A.S., Creti, P., Baglio, V. , Modica, E. and Antonucci, V. (2000) Influence of flow field design on the performance of a direct methanol fuel cell. J. Power Sources 91, 202–209.CrossRefGoogle Scholar
  4. Bae, B., Kim, D., Kim, H.J., Lim, T.H., Oh, I.H. and Ha, H.Y. (2006) Surface characterization of argon-plasma-modified perfluorosulfonic acid membranes. J. Phys. Chem. B 110, 4240–4246.CrossRefGoogle Scholar
  5. Bett, J.A.S., Kinoshita, K. and Stonehart, P. (1976) Crystallite growth of platinum dispersed on graphitized carbon-black. 2. Effect of liquid environment. J. Catal. 41, 124–133.Google Scholar
  6. Blurton, K.F., Kunz, H.R. and Rutt, D.R. (1978) Surface area loss of platinum supported on graphite. Electrochim. Acta 23, 183–190.CrossRefGoogle Scholar
  7. Borup, R.L., Davey, J.R., Garzon, F.H., Wood, D.L. and Inbody, M.A. (2006) PEM fuel cell electrocatalyst durability measurements. J. Power Sources 163, 76–81.CrossRefGoogle Scholar
  8. Cai, M., Ruthkosky, M.S., Merzougui, B., Swathirajan, S., Balogh, M.P. and Oh, S.H. (2006) Investigation of thermal and electrochemical degradation of fuel cell catalysts. J. Power Sources 16, 977–986.CrossRefGoogle Scholar
  9. Chen, W.M., Sun, G.Q., Guo, J.S., Zhao, X.S., Yan, S.Y., Tian, J., Tang, S.H., Zhou, Z.H. and Xin, Q. (2006) Test on the degradation of direct methanol fuel cell. Electrochim. Acta 51, 2391–2399.CrossRefGoogle Scholar
  10. Cho, E.A., Ko, J.J., Ha, H.Y., Hong, S.A., Lee, K.Y., Lim, T.W. and Oh, I.H. (2003) Characteristics of the PEMFC repetitively brought to temperatures below 0 degree C. J. Electrochem. Soc. 150, A1667–A1670.CrossRefGoogle Scholar
  11. Choi, J.H., Kim, Y.S., Bashyam, R. and Zelenay, P. (2005) Ruthenium crossover in DMFCs operating with different proton conducting membranes. ECS Trans. 1, 437–445.Google Scholar
  12. Conway, B.E. and Jerkiewicz, G. (1992) Surface orientation dependence of oxide film growth at platinum single-crystals. J. Electroanal. Chem. 339, 123–146.CrossRefGoogle Scholar
  13. Conway, B.E., Barnett B., Angersteinkozlowska, H. and Tilak, B.V. (1990) A surface-electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals. J. Chem. Phys. 93, 8361–8373.CrossRefGoogle Scholar
  14. Dinh, H.N., Ren, X.M., Garzon, F.H., Zelenay, P. and Gottesfeld, S. (2000) Electrocatalysis in direct methanol fuel cells: In-situ probing of Pt–Ru anode catalyst surfaces. J. Electroanal. Chem. 491, 222–233.CrossRefGoogle Scholar
  15. Dmowski, W., Egami, T., Swider-Lyons, K.E., Love, C.T. and Rolison, D.R. (2002) Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B. 106, 12677–12683.CrossRefGoogle Scholar
  16. Eickes, C., Brosha, E., Garzon, F., Purdy, G., Zelenay, P., Monta, T. and Thompsett, D. (2005) Electrochemical and XRD characterization of Pt–Ru blacks for DMFC anodes. Electrochemical Society Series, vol. 2002, pp. 450–467.Google Scholar
  17. Eickes, C., Piela, P., Davey, J. and Zelenay, P. (2006) Recoverable cathode performance loss in direct methanol fuel cells. J. Electrochem. Soc. 153, A171–A178.CrossRefGoogle Scholar
  18. Feichtinger, J., Kerres, J., Schulz, A., Walker, M. and Schumacher, U. (2002) Plasma modifications of membranes for PEM fuel cells. J. New Mater. Electrochem. Syst. 5, 155–162.Google Scholar
  19. Ferreira, P.J., La O', G.J., Shao-Horn, Y. , Morgan, D., Makharia, R., Kocha, S. and Gasteiger, H.A. (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J. Electrochem. Soc. 152, A2256–A2271.CrossRefGoogle Scholar
  20. Gancs, L., Hult, B.N., Hakim, N. and Mukerjee, S. (2007) The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochem. Solid-State Lett. 10, 15–154.CrossRefGoogle Scholar
  21. Gasteiger, H.A., Markovic, N., Ross, P.N. and Cairns, E.J. (1994) CO electrooxidation on well-characterized Pt–Ru alloys. J. Phys. Chem. 98, 617–625.CrossRefGoogle Scholar
  22. Gubler, L., Kuhn, H., Schmidt, T.J., Scherer, G.G., Brack, H.P. and Simbeck, K. (2004) Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes. Fuel Cells 4, 196–207.CrossRefGoogle Scholar
  23. Guilminot, E., Corcella, A., Charlot, F., Maillard, F. and Chatenet, M. (2007) Detection of PtZ+ ions and Pt nanoparticles inside the membrane of a used PEMFC. J. Electrochem. Soc. 154, B96–B105.CrossRefGoogle Scholar
  24. Hamon, C., Purdy, G., Kim, Y.S., Pivovar, B. and Zelenay, P. (2006) Novel process for improved long-term stability of DMFC membrane-electrode assemblies. Proceedings – Electrochemical Society, vol. P2004–21, pp. 352–362.Google Scholar
  25. Harrington, D.A. (1997) Simulation of anodic Pt oxide growth. J. Electroanal. Chem. 420, 101–109.CrossRefGoogle Scholar
  26. Jeon, M.K., Won, J.Y. and Woo, S.I. (2007) Improved performance of direct methanol fuel cells by anodic treatment. Electrochem. Solid-State Lett. 10, B23–B25.CrossRefGoogle Scholar
  27. Jiang, L.H., Sun, G.Q., Wang, S.L., Wang, G.X., Xin, Q., Zhou, Z.H. and Zhou, B. (2005) Electrode catalysts behavior during direct ethanol fuel cell life-time test. Electrochem. Commun. 7, 663–668.CrossRefGoogle Scholar
  28. Jiang, R.Z., Rong, C. and Chu, D. (2007) Fuel crossover and energy conversion in lifetime operation of direct methanol fuel cells. J. Electrochem. Soc. 154, B13–B19.CrossRefGoogle Scholar
  29. Johnston, C.M., Choi, J., Kim, Y.S. and Zelenay, P. (2006) Towards understanding ruthenium crossover effects: the oxygen reduction reaction on Ru-modified platinum surfaces. 209th Electrochemical Society meeting, Denver, Colorado, May 07–May 12, Abs. no. 1123.Google Scholar
  30. Kerres, J., Ullrich, A., Hein, M., Gogel, V., Friedrich, K.A. and Jörissen, L. (2004) Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells. Fuel Cells, 4, 105–112.CrossRefGoogle Scholar
  31. Kim, Y.S. and Pivovar, B. (2005) Durability of membrane–electrode interface under DMFC operating conditions. ECS Trans. 1, 457–467.CrossRefGoogle Scholar
  32. Kim, Y.S., Harrison, W.L., McGrath, J.E. and Pivovar, B.S. (2004) Effect of interfacial resistance on long term performance of direct methanol fuel cells. 205th Electrochemical Society meeting, San Antonio, Texas, May 9–13, Abs. no. 334.Google Scholar
  33. Kinoshita, K., Routsis, K., Bett, J.A.S. and Brooks, C.S. (1973) Changes in morphology of platinum agglomerates during sintering. Electrochim. Acta 18, 953–961.CrossRefGoogle Scholar
  34. Lee, K., Ishihara, A., Mitsushima, S., Kamiya, N. and Ota, K. (2004) Effect of recast temperature of diffusion and dissolution of oxygen and morphological properties in recast Nafion. J. Electrochem. Soc. 151, A639–A645.CrossRefGoogle Scholar
  35. Liang, Z.X., Zhao, T.S. and Prabhuram, J. (2006) A glue method for fabricating membrane electrode assemblies for direct methanol fuel cells. Electrochim. Acta 51, 6412–6418.CrossRefGoogle Scholar
  36. Liu, W.P. and Wang, C.Y. (2007) Three-dimensional simulations of liquid feed direct methanol fuel cells. J. Electrochem. Soc. 154, B352–B361.CrossRefGoogle Scholar
  37. Morikawa, H., Mitsui, T., Hamagami, J. and Kanamura, K. (2002) Fabrication of membrane electrode assembly for micro fuel cell by using electrophoretic deposition process. Electrochemistry 70, 937–939.Google Scholar
  38. Oedegaard, A. (2006) Characterization of direct methanol fuel cells under near-ambient conditions. J. Power Sources 157, 244–252.CrossRefGoogle Scholar
  39. Paik, C.H., Jarvi, T.D. and O'Grady, W.E. (2004) Extent of PEMFC cathode surface oxidation by oxygen and water measured by CV. Electrochem. Solid-State Lett. 7, A82–A84.CrossRefGoogle Scholar
  40. Piela, P., Eickes, C., Brosha, E., Garzon, F. and Zelenay, P. (2004) Ruthenium crossover in direct methanol fuel cell with Pt–Ru black anode. J. Electrochem. Soc. 151, A2053–A2059.CrossRefGoogle Scholar
  41. Pivovar, B. and Kim, Y.S. (2007) The membrane–electrode interface in PEFCs: I. A method for quantifying membrane–electrode interfacial resistance. J. Electrochem. Soc. 154, B739–B744.Google Scholar
  42. Roen, L.M., Paik, C.H. and Jarvi, T.D. (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem. Solid-State Lett. 7, A19–A22.CrossRefGoogle Scholar
  43. Roziere, J. and Jones, D.J. (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu. Rev. Mater. Res. 33, 503–555.CrossRefGoogle Scholar
  44. Saha, M.S., Kimoto, K., Nishiki, Y. and Furuta, T. (2004) A fabrication method for MEAs for PEFCs using Nafion precursor. Electrochem. Solid-State Lett. 7, A429–A431.CrossRefGoogle Scholar
  45. Sarma, L.S., Chen, C.H., Wang, G.R., Hsueh, K.L., Huang, C.P., Sheu, H.S., Liu, D.G., Lee, J.F. and Hwang, B.J. (2007) Investigations of direct methanol fuel cell (DMFC) fading mechanisms. J. Power Sources 167, 358–365.CrossRefGoogle Scholar
  46. Savadogo, O. (1998) Emerging membrane for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. J. New Mater. Electrochem. Syst. 1, 47–66.Google Scholar
  47. Scott, K., Taama, W. and Crulickshank, J. (1998) Performance of a direct methanol fuel cell. J. Appl. Electrochem. 28, 289–297.CrossRefGoogle Scholar
  48. Silva, V.S., Ruffmann, B., Silva, H., Gallego, Y.A., Mendes, A., Madeira, L.M. and Nunes, S.P. (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance – I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes. J. Power Sources 140, 34–40.Google Scholar
  49. Siroma, Z., Fujiwara, N., Ioroi, T., Yamazaki, S., Yasuda, K. and Miyazaki, Y. (2004) Dissolution of Nafion membrane and recast Nafion film in mixtures of methanol and water. J. Power Sources 125, 41–45.CrossRefGoogle Scholar
  50. Tseung, A.C.C. and Dhara, S.C. (1975) Loss of surface-area by platinum and supported platinum black electrocatalyst. Electrochim. Acta 20, 681–683.CrossRefGoogle Scholar
  51. Uribe, F.A. and Zawodzinski, T.A. (2003) Method for Improving Fuel Cell Performance, US Patent # 6,635,369.Google Scholar
  52. Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T. and Stonehart, P. (1994) Activity and stability of ordered and disordered Co–Pt alloys for phosphoric acid fuel cells. J. Electrochem. Soc. 141, 2659–2668.CrossRefGoogle Scholar
  53. Wilson, M.S., Garzon, F.H., Sickafus, K.E. and Gottesfeld, S. (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells. J. Electrochem. Soc. 140, 2872–2877.CrossRefGoogle Scholar
  54. Yasuda, D.A., Taniguchi, A., Akita, T., Ioroi, T. and Siroma, Z. (2006) Characteristics of a platinum black catalyst layer with regard to platinum dissolution phenomena in a membrane electrode assembly. J. Electrochem. Soc. 153, A1599–1603.CrossRefGoogle Scholar
  55. Zelenay, P. and Kim, Y.S. (2005) Performance degradation of DMFC MEAs and methods of improving their longevity. Fuel Cells Durability – Stationary, Automotive, and Portable. Knowledge Foundation, Washington DC, Dec. 8–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yu Seung Kim
    • 1
  • Piotr Zelenay
    • 1
  1. 1.Materials Physics and Applications DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations