Skip to main content

Metabolite Channeling and Multi-enzyme Complexes

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

The assembly of cooperating enzymes into multicatalytic complexes, also known as “metabolons,” has become a well-accepted concept in cellular metabolism, at least in principle. There are still relatively few examples where the existence of such systems is supported by solid experimental evidence and even fewer where there is evidence for “channeling” of metabolites through the complex. However, proteomic approaches are providing new evidence for the pervasiveness of this type of organization, while structural biology is offering insights into how these systems are constructed and regulated. New and improved technologies for analyzing protein interactions and assemblies, both in vitro and in intact cells, are opening the doors to explo-ring the intracellular organization of a growing number of metabolic complexes in plants and other organisms. There is also an increasing appre-ciation of the surprising scale of many protein interaction networks, the multiple functions of individual proteins, and the importance (and challenges) of compartmentalization. As a result, the concept of enzyme complexes is gaining wider acceptance and becoming an increasingly important consideration in efforts to engineer metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen, K.et al (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol.8, 280–291

    Article  PubMed  CAS  Google Scholar 

  2. Marsh, B.J.et al (2001) Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl. Acad. Sci. USA.98, 2399–2406

    Article  PubMed  CAS  Google Scholar 

  3. Uetz, P.et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae<. Nature403, 623–627

    Article  PubMed  CAS  Google Scholar 

  4. Giot, L.et al (2003) A protein interaction map of Drosophila melanogaster<. Science302, 1727–1736

    Article  PubMed  CAS  Google Scholar 

  5. Rual, J.F.et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature437, 1173–1178

    Article  PubMed  CAS  Google Scholar 

  6. Li, S.et al (2004) A map of the interactome network of the metazoan C. elegans. Science303, 540–543

    Article  PubMed  CAS  Google Scholar 

  7. Han, J.D.et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature430, 88–93

    Article  PubMed  CAS  Google Scholar 

  8. Tarassov, K.et al (2008) An in vivo map of the yeast protein interactome. Science320, 1465–1470

    Article  PubMed  CAS  Google Scholar 

  9. Robinson, C.V.et al (2007) The molecular sociology of the cell. Nature450, 973–982

    Article  PubMed  CAS  Google Scholar 

  10. Srere, P.A. (2000) Macromolecular interactions: tracing the roots. Trends Biochem. Sci.25, 150–153

    Article  PubMed  CAS  Google Scholar 

  11. Islam, M.M.et al (2007) A novel branched-chain amino acid metabolon – protein-protein interactions in a supramolecular complex. J. Biol. Chem.282, 11893–11903

    Article  PubMed  CAS  Google Scholar 

  12. Ishikawa, M.et al (2004) Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex. EMBO J.23, 2745–2754

    Article  PubMed  CAS  Google Scholar 

  13. Jenni, S.et al (2006) Architecture of a fungal fatty acid synthase at 5 angstrom resolution. Science311, 1263–1267

    Article  PubMed  CAS  Google Scholar 

  14. Maier, T.et al (2006) Architecture of mammalian fatty acid synthase at 4.5 angstrom resolution. Science311, 1258–1262

    Article  PubMed  CAS  Google Scholar 

  15. Fries, M.et al (2007) Distinct modes of recognition of the lipoyl domain as substrate by the E1 and E3 components of the pyruvate dehydrogenase multienzyme complex. J. Mol. Biol.366, 132–139

    Article  PubMed  CAS  Google Scholar 

  16. Giles, N.H. (1978) The organization, function, and evolution of gene clusters in eucaryotes. Am. Naturalist112, 641–657

    Article  CAS  Google Scholar 

  17. Singh, S.A. and Christendat, D. (2007) The DHQ-dehydroshikimate-SDH-shikimate-NADP(H) complex: insights into metabolite transfer in the shikimate pathway. Cryst. Growth Des.7, 2153–2160

    Article  CAS  Google Scholar 

  18. Luo, B.et al (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectro-metry. J. Chromatogr. A1147, 153–164

    Article  PubMed  CAS  Google Scholar 

  19. Ishii, N.et al (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science316, 593–597

    Article  PubMed  CAS  Google Scholar 

  20. Saigne-Soulard, C.et al (2006) C-13 NMR analysis of polyphenol biosynthesis in grape cells: Impact of various inducing factors. Anal. Chim. Acta563, 137–144

    Article  CAS  Google Scholar 

  21. Pereira, M.P. and Brown, E.D. (2004) Bifunctional catalysis by CDP-ribitol synthase: Convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae< and Staphylococcus aureus<. Biochemistry (Mosc).43, 11802–11812

    Article  CAS  Google Scholar 

  22. Garcon, A.et al (2006) Crystal structure of the bifunctional dihydroneopterin aldolase/6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Streptococcus pneumoniae<. J. Mol. Biol.360, 644–653

    Article  PubMed  CAS  Google Scholar 

  23. Taglieber, A. et al (2007) Alternate-site enzyme promiscuity. Angew. Chem. Int. Ed.46, 8597–8600

    Article  CAS  Google Scholar 

  24. Peisajovich, S.G. and Tawfik, D.S. (2007) Protein engineers turned evolutionists. Nature Methods4, 991–994

    Article  PubMed  CAS  Google Scholar 

  25. Chiron, H.et al (2000) Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris< L.). Plant Mol. Biol.44, 733–745

    Article  PubMed  CAS  Google Scholar 

  26. Frick, S. and Kutchan, T.M. (1999) Molecular cloning and functional expression of O<-methyl-transferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J.17, 329–339

    Article  PubMed  CAS  Google Scholar 

  27. Gauthier, A.et al (1998) Characterization of two cDNA clones which encode O<-methyl­transferases for the methylation of both flavonoid and phenylpropanoid compounds.Arch. Biochem. Biophys.351, 243–249

    Article  PubMed  CAS  Google Scholar 

  28. He, X.-Z. and Dixon, R.A. (2000) Genetic mani-pulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4’-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell12, 1689–1702

    Article  PubMed  CAS  Google Scholar 

  29. Liu, C.-J. and Dixon, R.A. (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daizein during isoflavoniod phytoalexin biosynthesis. Plant Cell13, 2643–2658

    Article  PubMed  CAS  Google Scholar 

  30. Deavours, B.E. et al (2006) Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula. Plant Mol. Biol.62, 715–733

    Article  PubMed  CAS  Google Scholar 

  31. Liu, C.J. et al (2006) Structural basis for dual functionality of isoflavonoid O-methyl­transferases in the evolution of plant defense responses. Plant Cell18, 3656–3669

    Article  PubMed  CAS  Google Scholar 

  32. Zubieta, C. et al (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat. Struct. Biol.8, 271–279

    Article  PubMed  CAS  Google Scholar 

  33. Jenrich, R.et al (2007) Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proc. Natl. Acad. Sci. USA104, 18848–18853

    Article  PubMed  CAS  Google Scholar 

  34. Kriechbaumer, V.et al (2007) Maize nitrilases have a dual role in auxin homeostasis and β-cyanoalanine hydrolysis. J. Exp. Bot.58, 4225–4233

    Article  PubMed  CAS  Google Scholar 

  35. Kim, S.Y.et al (2005) Novel type of enzyme multimerization enhances substrate affinity of oat β-glucosidase. J. Struct. Biol.150, 1–10

    Article  PubMed  CAS  Google Scholar 

  36. Owens, D.K.et al (2008) Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol.147, 1046–1061

    Article  PubMed  CAS  Google Scholar 

  37. Kim, S.J.et al (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA101, 1455–1460

    Article  PubMed  CAS  Google Scholar 

  38. Yamagami, T. et al (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene familyJ. Biol. Chem.278, 49102–49112

    Article  PubMed  CAS  Google Scholar 

  39. Dhugga, K.S. (2007) Maize biomass yield and composition for biofuels. Crop Sci.47, 2211–2227

    Article  CAS  Google Scholar 

  40. Somerville, C. (2006) Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol.22, 53–78

    Article  PubMed  CAS  Google Scholar 

  41. Saxena, I.M. and Brown, R.M. (2005) Cellulose biosynthesis: current views and evolving concepts. Ann. Bot.96, 9–21

    Article  PubMed  CAS  Google Scholar 

  42. Mueller, S.C. and Brown, R.M. (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol.84, 315–326

    Article  PubMed  CAS  Google Scholar 

  43. Taylor, N.G.et al (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. USA100, 1450–1455

    Article  PubMed  CAS  Google Scholar 

  44. Persson, S. et al (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis<. Proc. Natl. Acad. Sci. USA104, 15566–15571

    Article  PubMed  CAS  Google Scholar 

  45. Desprez, T. et al (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana<. Proc. Natl. Acad. Sci. USA104, 15572–15577

    Article  PubMed  CAS  Google Scholar 

  46. Paradez, A.et al (2006) Microtubule cortical array organization and plant cell morphogenesis. Curr. Opin. Plant Biol.9, 571–578

    Article  PubMed  CAS  Google Scholar 

  47. DeBolt, S.et al (2007) Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement. Proc. Natl. Acad. Sci. USA104, 5854–5859

    Article  PubMed  CAS  Google Scholar 

  48. Chuong, S.D.X.et al (2004) Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol. Cell. Proteomics3, 970–983

    Article  PubMed  CAS  Google Scholar 

  49. Hrazdina, G. and Wagner, G.J. (1985) Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys.237, 88–100

    Article  PubMed  CAS  Google Scholar 

  50. Hughes, T.R.et al (2000) Functional discovery via a compendium of expression profiles. Cell102, 109–126

    Article  PubMed  CAS  Google Scholar 

  51. Mo, C. and Bard, M. (2005) Erg28p is a key protein in the yeast sterol biosynthetic enzyme complex. J. Lipid Res.46, 1991–1998

    Article  PubMed  CAS  Google Scholar 

  52. Mo, C. and Bard, M. (2005) A systematic study of yeast sterol biosynthetic protein-protein interactions using the split-ubiquitin system. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids1737, 152–160

    CAS  Google Scholar 

  53. Ottolenghi, C.et al (2000) The genomic structure of C140rf1 is conserved across eukarya. Mamm. Genome11, 786–788

    Article  PubMed  CAS  Google Scholar 

  54. Burbulis, I.E. and Winkel-Shirley, B. (1999) Interactions among enzymes of the Arabidopsis< flavonoid biosynthetic pathway. Proc. Natl. Acad. Sci. USA96, 12929–12934

    Article  PubMed  CAS  Google Scholar 

  55. Owens, D.K. et al. (2008) Biochemical and genetic characterization of Arabidopsis flavanone 3β-hydroxylase. Plant Physiol. Biochem. 46, 833–843

    Google Scholar 

  56. Kredich, N. et al (1969) Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium<. J. Biol. Chem.244, 2428–2439

    PubMed  CAS  Google Scholar 

  57. Wirtz, M. and Hell, R. (2006) Functional analysis of the cysteine synthase protein complex from plants: Structural, biochemical and regulatory properties. J. Plant Physiol.163, 273–286

    Article  PubMed  CAS  Google Scholar 

  58. Bonner, E.R.et al (2005) Molecular basis of cysteine biosynthesis in plants – structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana<. J. Biol. Chem.280, 38803–38813

    Article  PubMed  CAS  Google Scholar 

  59. Wirtz, M. and Hell, R. (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell19, 625–639

    Article  PubMed  CAS  Google Scholar 

  60. Francois, J.A. et al (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis< cyst-eine synthase complex. Plant Cell18, 3647–3655

    Article  PubMed  CAS  Google Scholar 

  61. Kumaran, S. and Jez, J.M. (2007) Ther-modynamics of the interaction between O-acetylserine sulfhydrylase and the C-terminus of serine acetyltransferase. Biochemistry (Mosc).46, 5586–5594

    Article  CAS  Google Scholar 

  62. Petoukhov, M.V. and Svergun, D.I. (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr. Opin. Struct. Biol.17, 562–571

    Article  PubMed  CAS  Google Scholar 

  63. Anderson, L.E. and Carol, A.A. (2005) Enzyme co-localization in the pea leaf cytosol: 3-P-glycerate kinase, glyceraldehyde-3-P dehydrogenase, triose-P isomerase and aldolase. Plant Sci.169, 620–628

    Article  CAS  Google Scholar 

  64. Graham, J.W.A.et al (2007) Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell19, 3723–3738

    Article  PubMed  CAS  Google Scholar 

  65. Dudkina, N.V. et al (2006) Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci.11, 232–240

    Article  PubMed  CAS  Google Scholar 

  66. Winkel, B. (2004) Metabolic channeling in plants. Annu. Rev. Plant Biol.55, 85–107

    Article  PubMed  CAS  Google Scholar 

  67. Facchini, P.J. and St-Pierre, B. (2005) Synthesis and trafficking of alkaloid biosynthetic enzymes. Curr. Opin. Plant Biol.8, 657–666

    Article  PubMed  CAS  Google Scholar 

  68. Gómez-Galera, S.et al (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep.26, 1689–1715

    Article  PubMed  Google Scholar 

  69. Morant, A.V. et al (2007) Lessons learned from metabolic engineering of cyanogenic glucosides. Metabolomics3, 383–398

    Article  CAS  Google Scholar 

  70. Shimamura, M.et al (2007) 2-hydroxyisoflavanone dehydratase is a critical determinant of isoflavone productivity in hairy root cultures of Lotus japo-nicus. Plant Cell Physiol.48, 1652–1657

    Article  PubMed  CAS  Google Scholar 

  71. Aharoni, A. et al (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci.10, 594–602

    Article  PubMed  CAS  Google Scholar 

  72. Yan, Y.J.et al (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli<. Appl. Environ. Microbiol.71, 3617–3623

    Article  PubMed  CAS  Google Scholar 

  73. Zalokar, M. (1960) Cytochemistry of centrifuged hyphae of Neurospora<. Exp. Cell Res.19, 114–132

    Article  PubMed  CAS  Google Scholar 

  74. Zalokar, M. (1969) Intracellular centrifugal separation of organelles in Phycomyces<. J. Cell Biol.41, 494–509

    Article  PubMed  CAS  Google Scholar 

  75. Kempner, E.S. and Miller, J.H. (1968) The molecular biology of Euglena gracilis. Exp. Cell Res.51, 141–149

    Article  PubMed  CAS  Google Scholar 

  76. Goehler, H.et al (2005) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease (vol 15, pp. 853, 2004). Mol. Cell19, 287–287

    Article  CAS  Google Scholar 

  77. Morsy, M.et al (2008) Charting plant interactomes: possibilities and challenges. Trends Plant Sci.13, 183–191

    Article  PubMed  CAS  Google Scholar 

  78. Lalonde, S. et al (2008) Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. Plant J.53, 610–635

    Article  PubMed  CAS  Google Scholar 

  79. Best, C.et al (2007) Localization of protein complexes by pattern recognition. Cell. Electron Microsc.79, 615–638

    Article  CAS  Google Scholar 

  80. Adjobo-Hermans, M.J.W.et al (2006) Plant G protein heterotrimers require dual lipidation motifs of G alpha and G gamma and do not dissociate upon activation. J. Cell Sci.119, 5087–5097

    Article  PubMed  CAS  Google Scholar 

  81. Serdyuk, I.N. (2007) Structured proteins and proteins with intrinsic disorder. Mol. Biol.41, 262–277

    Article  CAS  Google Scholar 

  82. Dyer, J.M. and Mullen, R.T. (2008) Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research. Physiol. Plant.132, 11–22

    PubMed  CAS  Google Scholar 

  83. Giegé, P. et al (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell15, 2140–2151

    Article  PubMed  Google Scholar 

  84. Brandina, I.et al (2006) Enolase takes part in a macromolecular complex associated to mitochondria in yeast. Biochim. Biophys. Acta1757, 1217–1228

    Article  PubMed  CAS  Google Scholar 

  85. Jeffery, C.J. (2005) Mass spectrometry and the search for moonlighting proteins. Mass Spectrom. Rev.24, 772–782

    Article  PubMed  CAS  Google Scholar 

  86. Moore, B.D. (2004) Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci.9, 221–228

    Article  PubMed  CAS  Google Scholar 

  87. Srere, P.A. (1997) An exception that proves the rule. Trends Biochem. Sci.22, 11–11

    Article  PubMed  CAS  Google Scholar 

  88. Anderson, L.E. et al (2005) Both chloroplastic and cytosolic phosphofructoaldolase isozymes are present in the pea leaf nucleus. Protoplasma225, 235–242

    Article  PubMed  CAS  Google Scholar 

  89. Anderson, L.E.et al (2004) Both chloroplastic and cytosolic phosphoglycerate kinase isozymes are present in the pea leaf nucleus. Protoplasma223, 103–110

    PubMed  CAS  Google Scholar 

  90. Anderson, L.E.et al (2004) Cytosolic glyceraldehyde-3-P dehydrogenase and the B subunit of the chloroplast enzyme are present in the pea leaf nucleus. Protoplasma223, 33–43

    Article  PubMed  CAS  Google Scholar 

  91. Saslowsky, D.et al (2005) Nuclear localization of flavonoid metabolism in Arabidopsis thaliana<. J. Biol. Chem.280, 23735–23740

    Article  PubMed  CAS  Google Scholar 

  92. Shimojima, M.et al (2005) Ferredoxin-dependent glutamate synthase moonlights in plant sulfolipid biosynthesis by forming a complex with SQD1. Arch. Biochem. Biophys.436, 206–214

    Article  PubMed  CAS  Google Scholar 

  93. Matarasso, N. et al (2005) A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression. Plant Cell17, 1205–1216

    Article  PubMed  CAS  Google Scholar 

  94. Pollmann, S.et al (2006) Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana<. Planta224, 1241–1253

    Article  PubMed  CAS  Google Scholar 

  95. Lunn, J.E. (2007) Compartmentation in plant metabolism. J. Exp. Bot.58, 35–47

    Article  PubMed  CAS  Google Scholar 

  96. Jeong, H. et al (2001) Lethality and centrality in protein networks. Nature411, 41–42

    Article  PubMed  CAS  Google Scholar 

  97. Vélot, C. et al (1997) Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry (Mosc).36, 14271–14276

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the insights of Joe Chappel (on the erg28p system), Danny Kohl (on the implications of recent metabolic profiling experiments in E. coli), and Joe Noel (on the issue of enzyme promiscuity supporting the existence of enzyme complexes), as well as the very helpful comments of three anonymous reviewers. She is grateful to the National Science Foundation for supporting the work in her laboratory on the flavonoid enzyme complex (currently grant number MCB 0445878). This article is dedicated to the memory of H. Olin Spivey, Professor Emeritus of Biochemistry and Molecular Biology at Oklahoma State University, who died on December 5, 2007. A pioneer in the field of metabolic organization, he will be remembered by many as a valued colleague who encouraged newcomers to join the network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda S.J. Winkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Winkel, B.S. (2009). Metabolite Channeling and Multi-enzyme Complexes. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_9

Download citation

Publish with us

Policies and ethics