Advertisement

Regulation of Secondary Metabolism by Jasmonate Hormones

  • Hongtao Zhang
  • Johan Memelink
Chapter

Abstract

The biosynthesis of many different types of secondary metabolites that serve defensive functions in different plant species is regulated by hormones belonging to the group of jasmonate compounds. Regulation acts at the level of transcription of structural genes encoding biosynthetic enzymes. Here we review recent insights into the mechanisms of signal transduction initiated by jasmonates leading to the activation of transcription factors. We present models for jasmonate signal transduction regulating tobacco alkaloid biosynthesis and terpenoid indole alkaloid biosynthesis in Catharanthus roseus. The models propose that perception of a bioactive jasmonate derivative by the receptor CORONATINE INSENSITIVE1 (COI1) results in the degradation of Jasmonate ZIM-domain (JAZ) proteins. Since these JAZ proteins repress the activity of the basic-Helix-Loop-Helix transcription factor MYC2, MYC2 then activates the expression of genes encoding certain members of the APETALA2/Ethylene Response Factor (AP2/ERF) family of transcription factors, which in turn activate the expression of alkaloid biosynthesis genes.

Keywords

Jasmonic Acid Alkaloid Biosynthesis Terpenoid Indole Alkaloid Jasmonate Biosynthesis Nicotine Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

HZ was supported by the Research Council for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO; grant # 812.06.002). The unpublished work on CrMYC2 was done in collaboration with Sabah Hedhili, Guillaume Chatel, Martial Pré and Pascal Gantet from the François Rabelais University in Tours, France. The unpublished work on the CrJAZ proteins was done in collaboration with Laurens Pauwels and Alain Goossens from the Department of Plant Systems Biology at Ghent University in Ghent, Belgium.

References

  1. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295: 2077–2080PubMedCrossRefGoogle Scholar
  2. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295: 2073–2076PubMedCrossRefGoogle Scholar
  3. Balbi V, Devoto A (2008) Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177: 301–318PubMedCrossRefGoogle Scholar
  4. Chahed K, Oudin A, Guivarc’h N, Hamdi S, Chen-ieux JC, Rideau M, Clastre M (2000) 1-Deoxy-D-xylulose 5-phosphate synthase from perwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Biochem 38: 559–566CrossRefGoogle Scholar
  5. Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671PubMedCrossRefGoogle Scholar
  6. De Sutter V, Vanderhaeghen R, Tilleman S, Lam-mertyn F, Vanhoutte I, Karimi M, Inzé D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44:1065–1076PubMedCrossRefGoogle Scholar
  7. del Pozo JC, Estelle M (2000) F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant Mol Biol 44:123–128PubMedCrossRefGoogle Scholar
  8. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32: 457–466PubMedCrossRefGoogle Scholar
  9. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445PubMedCrossRefGoogle Scholar
  10. Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Ann Rev Plant Physiol Plant Mol Biol 52: 29–66CrossRefGoogle Scholar
  11. Feys BF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6: 751–759PubMedCrossRefGoogle Scholar
  12. Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99: 11519–11524PubMedCrossRefGoogle Scholar
  13. Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé D, Oksman-Caldentey KM (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100: 8595–8600PubMedCrossRefGoogle Scholar
  14. Gray WM, Muskett PR, Chuang HW, Parker JE (2003) Arabidopsis SGT1b is required for SCFTIR1-mediated auxin response. Plant Cell 15: 1310–1319PubMedCrossRefGoogle Scholar
  15. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57: 761–780PubMedCrossRefGoogle Scholar
  16. Guilfoyle T (2007) Sticking with auxin. Nature 446: 621–622PubMedCrossRefGoogle Scholar
  17. Halitschke R, Baldwin IT (2003) Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata.Plant J 36: 794–807PubMedCrossRefGoogle Scholar
  18. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57: 303–333PubMedCrossRefGoogle Scholar
  19. Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323–329PubMedCrossRefGoogle Scholar
  20. Katoh A, Ohki H, Inai K, Hashimoto T (2005) Mole-cular regulation of nicotine biosynthesis. Plant Biotechnol 22: 389–392CrossRefGoogle Scholar
  21. Katsir L, Chung HS, Koo AJ, Howe GA (2008a) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol, doi:10.1016/j.physletb.2003.10.071Google Scholar
  22. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008b) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105: 7100–7105CrossRefGoogle Scholar
  23. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446–451PubMedCrossRefGoogle Scholar
  24. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5: 325–331PubMedCrossRefGoogle Scholar
  25. Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16: 126–143PubMedCrossRefGoogle Scholar
  26. Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540PubMedCrossRefGoogle Scholar
  27. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discri-minate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 1938–1950PubMedCrossRefGoogle Scholar
  28. Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46: 984–1008Google Scholar
  29. Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick P, Browse J, Howe G, He SY (2008) A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interaction with the COI1 F-box protein. Plant J 55: 979–988PubMedCrossRefGoogle Scholar
  30. Memelink J, Gantet P (2007) Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus.Phytochem Rev 6:353–362CrossRefGoogle Scholar
  31. Memelink J, Verpoorte R, Kijne JW (2001) ORC Anization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6: 212–219PubMedCrossRefGoogle Scholar
  32. Menke FLH, Champion A, Kijne JW, Memelink J (1999a) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary meta-bolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18: 4455–4463CrossRefGoogle Scholar
  33. Menke FLH, Parchmann S, Mueller MJ, Kijne JW, Memelink J (1999b) Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol 119: 1289–1296CrossRefGoogle Scholar
  34. Paschold A, Halitschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore- induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51: 79–91PubMedCrossRefGoogle Scholar
  35. Pré M, Sibéril Y, Memelink J, Champion A, Doireau P, Gantet P (2000) Isolation by the yeast one-hybrid system of cDNAs encoding transcription factors that bind to the G-box element of the strictosidine synthase gene promoter from Catha-ranthus roseus.Int J Bio-chrom 5: 229–244Google Scholar
  36. Rischer H, Oresic M, Seppänen-Laakso T, Kataj-amaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MC, Inzé D, Oksman-Caldentey KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseuscells. Proc Natl Acad Sci USA 103: 5614–5619PubMedCrossRefGoogle Scholar
  37. Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6: 365–371PubMedCrossRefGoogle Scholar
  38. Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris.Plant Cell Physiol 41: 831–839PubMedCrossRefGoogle Scholar
  39. Shoji T, Ogawa T, Hashimoto T (2008) Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant Cell Physiol 49: 1003–1012PubMedCrossRefGoogle Scholar
  40. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117–2127PubMedCrossRefGoogle Scholar
  41. Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89: 6837–6840PubMedCrossRefGoogle Scholar
  42. Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51: 895–911PubMedCrossRefGoogle Scholar
  43. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mecha-nism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645PubMedCrossRefGoogle Scholar
  44. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661–665PubMedCrossRefGoogle Scholar
  45. Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14 Suppl: S153–S164PubMedGoogle Scholar
  46. Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The tify family previously known as ZIM. Trends Plant Sci12: 239–244CrossRefGoogle Scholar
  47. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289: 295–297PubMedCrossRefGoogle Scholar
  48. van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25: 43–53PubMedCrossRefGoogle Scholar
  49. van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11: 607–628PubMedCrossRefGoogle Scholar
  50. Veau B, Courtois M, Oudin A, Chénieux JC, Rideau M, Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta 1517: 159–163PubMedGoogle Scholar
  51. Vom Endt D, Soares e Silva M, Kijne JW, Pasquali G, Memelink J (2007) Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-hook DNA-binding proteins. Plant Physiol 144: 1680–1689PubMedCrossRefGoogle Scholar
  52. Wang L, Allmann S, Wu J, Baldwin IT (2008) Comp-arisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata.Plant Physiol 146: 904–915PubMedCrossRefGoogle Scholar
  53. Wang KL, Li H, Ecker JR (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14 Suppl: S131–S151PubMedGoogle Scholar
  54. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100: 681–697PubMedCrossRefGoogle Scholar
  55. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094PubMedCrossRefGoogle Scholar
  56. Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919–1935PubMedCrossRefGoogle Scholar
  57. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of BiologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations