Methods for Molecular Identification of Biosynthetic Enzymes in Plants

  • Sarah O’Connor


This chapter highlights the major strategies used to identify the genes of plant ­natural product biosynthetic pathways. One or two key examples that illustrate these strategies are provided. A wide range of enzyme classes have been identified using the approaches described in this review including P450 enzymes, terpene systhases, and glycosyltransferases. The advantages and disadvantages of each approach is discussed.


Tropane Alkaloid Alkaloid Biosynthesis Tryptophan Decarboxylase Taxol Biosynthesis Plant Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I gratefully acknowledge Dr. Xudong Qu for his helpful comments.


  1. 1.
    McCurdy, C. R. and Scully, S. S. (2005) Analgesic substances derived from natural products (natureceuticals). Life Sci.78, 476–484.PubMedCrossRefGoogle Scholar
  2. 2.
    Rainsford, K. D. History and development of the salicylates. (2004) In Aspirin and Related Drugs (K.D. Rainsford, ed.), Taylor & Francis, London/New York, pp. 1–23.CrossRefGoogle Scholar
  3. 3.
    Altmann, K.-H. and Gertsch, J. (2007) Anticancer drugs from nature-natural products as a unique source of new microtubule-stabilizing agents. Nat. Prod. Rep.24(2), 327–357.PubMedCrossRefGoogle Scholar
  4. 4.
    Bode, H. B. and Mueller, R. (2005) The impact of bacterial genomics on natural product rese-arch. Angew. Chem. Intl. Ed.44, 6828–6846.CrossRefGoogle Scholar
  5. 5.
    Menzella, H. G. and Reeves, C. D. (2007) Combinatorial biosynthesis for drug development. Curr. Opin. Microbiol.10, 238–245.PubMedCrossRefGoogle Scholar
  6. 6.
    Dixon, R. A. (2005) Engineering of plant natural product pathways. Curr. Opin. Plant Biol.8, 329–336.PubMedCrossRefGoogle Scholar
  7. 7.
    Katsuyama, Y., Funa, N., Miyahisa, I., and Horinouchi, S. (2007) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol.14, 613–621.PubMedCrossRefGoogle Scholar
  8. 8.
    Chang, M. C. Y., Eachus, R. A., Trieu, W., Ro, D. K., and Keasling, J. D. (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol.3, 274–277.PubMedCrossRefGoogle Scholar
  9. 9.
    Allen, R. S., Millgate, A. G., Chitty, J. A., Thisleton, J., Miller, J. A. C., Fist, A. J., Gerlach, W. L., and Larkin, P. J. (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat. Biotechnol.22, 1559–1566.PubMedCrossRefGoogle Scholar
  10. 10.
    Frick, S., Kramell, R., and Kutchan, T. M. (2007) Metabolic engineering with a morphine biosynthetic P450 in opium poppy surpasses breeding. Met. Eng.9, 169–176.CrossRefGoogle Scholar
  11. 11.
    Julsing, M. K., Koulman, A., Woerdenbag, H. J., Quax, W. J., and Kayser, O. (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol. Eng.23, 265–279.PubMedCrossRefGoogle Scholar
  12. 12.
    Gantet, P. and Memelink, J. (2002) Transcrip-tion factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharm. Sci.23, 563–569.PubMedCrossRefGoogle Scholar
  13. 13.
    Hashimoto, T. and Yamada, Y. (2003) New genes in alkaloid metabolism and transport. Curr. Opin. Biotech.14, 163–168.PubMedCrossRefGoogle Scholar
  14. 14.
    Qi, X., Bakht, S., Leggett, M., Maxwell, C., Melton, R., and Osbourn, A. (2004) A gene cluster for secondary metabolism in oat: Implications for the evolution of metabolic diversity in plants. Proc. Natl. Acad. Sci. USA.101, 8233–8238.PubMedCrossRefGoogle Scholar
  15. 15.
  16. 16.
    Durst, F. and O’Keefe, D. P. (1995) Plant cytochromes P450: an overview. Drug Metabol Drug Interact.12, 171–187.PubMedCrossRefGoogle Scholar
  17. 17.
    Tholl, D. (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol.9, 297–304.PubMedCrossRefGoogle Scholar
  18. 18.
    Gachon, C. M., Langlois-Meurinne, M., and Saindrenan, P. (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci.10, 542–549.PubMedCrossRefGoogle Scholar
  19. 19.
    Dittrich, H. and Kutchan, T. M. (1991) Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc. Natl. Acad. Sci. USA.88, 9969–9973.PubMedCrossRefGoogle Scholar
  20. 20.
    Murata, J. and de Luca, V. (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine 16-O-methyl transferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus<. Plant J.44, 581–594.PubMedCrossRefGoogle Scholar
  21. 21.
    Levac, D., Murata, J., Kim, W. S., and De Luca, V. (2008) Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus< 16-hydroxytabersonine-16-O-methyltransferase. Plant J.53, 225–236.PubMedCrossRefGoogle Scholar
  22. 22.
    Achnine, L., Huhman, D. V., Farag, M. A., Sumner, L. W., Blount, J. W., and Dixon, R. A. (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula<. Plant J.41, 875–887.PubMedCrossRefGoogle Scholar
  23. 23.
    Walker, K. and Croteau, R. (2000) Taxol biosynthesis: Molecular cloning of a benzoyl-CoA:taxane 2a-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA.97, 13591–13596.PubMedCrossRefGoogle Scholar
  24. 24.
    Kutchan, T. M. and Schroder, J. (2002) Selected cell cultures and induction methods for cloning and assaying cytochromes P450 in alkaloid pathways. Meth. Enzymol.357, 370–381.PubMedCrossRefGoogle Scholar
  25. 25.
    Pauli, H. H. and Kutchan, T. M. (1998) Molecular cloning and functional heterologous expression of two alleles encoding (S)-N- methylcoclaurine 3′-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis. Plant J.13, 793–801.PubMedCrossRefGoogle Scholar
  26. 26.
    Chou, W. M. and Kutchan, T. M. (1998) Enzymatic oxidations of alkaloids. Plant J.15, 289–300.PubMedCrossRefGoogle Scholar
  27. 27.
    Jennewein, S., Wildung, M. R., Chau, M., Walker, K., and Croteau, R. (2004) Random sequencing of an induced Taxus< cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc. Natl. Acad. Sci. USA.101, 9149–9154.PubMedCrossRefGoogle Scholar
  28. 28.
    Lange, B. M., Wildung, M. R., Stauber, E. J., Sanchez, C., Pouchnik, D., and Croteau, R. (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc. Natl. Acad. Sci. USA.97, 2934–2939.PubMedCrossRefGoogle Scholar
  29. 29.
    Hirai, M. Y., Tohge, T., and Saito, K. (2006) Systems based analysis of plant metabolism by integration of metabolomics with transcriptomics. Biotech. Agric. Forestry.57, 199–209.CrossRefGoogle Scholar
  30. 30.
    Rischer, H., Oresic, M., Seppanen-Laakso, T., Katajamaa, M., Lammertyn, F., Ardiles-Diaz, W., Van Montagu, M. C. E., Inze, D., Oksman-Caldentey, K. M., and Goossens, A. (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc. Natl. Acad. Sci. USA.103, 5614–5619.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin, K. J. and Pardee, A. B. (2000) Identifying expressed genes. Proc. Natl. Acad. Sci. USA.97, 3789–3791.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, J., Sheehan, M., Brookman, H., and Timko, M. P. (2000) Characterization of cDNAs differentially expressed in roots of tobacco (Nicotiana tabacum< cv Burley 21) during the early stages of alkaloid biosynthesis. Plant Sci.158, 19–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Shukla, A. K., Shasany, A. K., Gupta, M. M., and Khanuja, S. P. S. (2006) Transcriptome analysis in Catharanthus roseus< leaves and roots for comparative terpenoid indole alkaloid profiles. J. Exp. Bot.57, 3921–3932.PubMedCrossRefGoogle Scholar
  34. 34.
    McGinnis, K., Chandler, V., Cone, K., Kaeppler, H., Kaeppler, S., Kerschen, A., Pikaard, C., Richards, E., Sidorenko, L., Smith, T., Springer, N., and Wulan, T. (2005) Transgene-induced RNA interference as a tool for plant functional genomics. Meth. Enzymol.392, 1–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Li, R., Reed, D. W., Liu, E., Nowak, J., Pelcher, L. E., Page, J. E., and Covello, P. S. (2006) Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger< reveals a cytochrome P450 involved in littorine rearrangement. Chem. Biol.13, 513–520.PubMedCrossRefGoogle Scholar
  36. 36.
    Ogita, S., Uefuji, H., Morimoto, M., and Sano, H. (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol. Biol.54, 931–941.PubMedCrossRefGoogle Scholar
  37. 37.
    Seed, B. (1995) Developments in expression cloning. Curr. Opin. Biotechnol.6, 567–573.PubMedCrossRefGoogle Scholar
  38. 38.
    Dalboge, H. and Lange, L. (1998) Using molecular techniques to identify new microbial biocatalysts. Trends Biotechnol.16, 265–272.PubMedCrossRefGoogle Scholar
  39. 39.
    Lange, T., Hedden, P., and Graebe, J. E. (1994) Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc. Natl. Acad. Sci. USA.91, 8552–8556.PubMedCrossRefGoogle Scholar
  40. 40.
    Geerlings, A., Redondo, F. J., Memelink, J., Contin, A., van der Heijden, R., and Verpoorte, R. (1999) Screening method for cDNAs encoding putative enzymes converting loganin into secologanin by a transgenic yeast culture. Biotechnol. Tech.13, 605–608.CrossRefGoogle Scholar
  41. 41.
    van der Fits, L. and Memelink, J. (2000) ORCA3, a Jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science.289, 295–297.PubMedCrossRefGoogle Scholar
  42. 42.
    van der Fits, L., Hilliou, F., and Memelink, J. (2001) T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Res.10, 513–521.PubMedCrossRefGoogle Scholar
  43. 43.
    Dixon, R. A. (1999) Plant natural products: the molecular genetic basis of biosynthetic diversity. Curr. Opin. Biotechnol.10, 192–197.PubMedCrossRefGoogle Scholar
  44. 44.
    Memelink, J. (2005) The use of genetics to dissect plant secondary pathways. Curr. Opin. Plant Biol.8, 230–235.PubMedCrossRefGoogle Scholar
  45. 45.
    Gomez-Galera, S., Pelacho, A. M., Gene, A., Capell, T., and Christou, P. (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep.26, 1689–1715.PubMedCrossRefGoogle Scholar
  46. 46.
    Littleton, J. (2007) The future of plant drug discovery. Expert Opin. Drug Discov.2, 673–683.CrossRefGoogle Scholar
  47. 47.
    McChesney, J. D., Venkataraman, S. K., and Henri, J. T. (2007) Plant natural products: Back to the future or into extinction. Phytochemistry.68, 2015–2022.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations