Use of Secondary Metabolite Variation in Crop Improvement

  • Daniel J. Kliebenstein


Plants contain significant levels of natural genetic and phenotypic variation between individuals within a species for traits ranging from development to metabolism to pathogen resistance. This intra-specific variation is a foundation for research by evolutionary and ecological biologists interested in understanding plant fitness as well as by plant biologists focused on increasing the fitness or yield of agricultural plants. An important component of intra-specific variation for both research groups is the secondary metabolite complement present within a plant. Variation in these compounds controls important ecological and agronomic traits such as resistance to insect herbivores and benefit to human health. This intraspecific variation means that secondary metabolite diversity can be an important tool in crop improvement. This chapter will focus on sources of intra-specific variation in plant secondary metabolites and the potential use of this natural variation in crop improvement and potential pleiotropic consequences of this natural variation.


Secondary Metabolite Intraspecific Variation Interspecific Variation Plant Secondary Metabolite Glucosinolate Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Intraspecific variation – Genetic or phenotypic variation between members of a species

Interspecific variation – Genetic or phenotypic variation between species


  1. 1.
    Wink M (1988) Plant Breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75: 225–233.CrossRefGoogle Scholar
  2. 2.
    Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, et al (2001) Genetic control of natural variation in Arabidopsis thaliana glucosinolate accumulation. Plant Physiol 126: 811–825.PubMedCrossRefGoogle Scholar
  3. 3.
    Du YJ, Vanloon JJA, Renwick JAA (1995) Contact chemoreception of oviposition-stimulating glucosinolates and an oviposition-deterrent cardenolide in two subspecies of Pieris napi. Physiol Entomol 20: 164–174.CrossRefGoogle Scholar
  4. 4.
    Kobayashi M, Gasking P, Spray C, Suzuki Y, Phinney B, et al (1993) Metabolism and biological activity of gibberellin A-4 in vegetative shoots of Zea mays,Oryza sativa, and Arabidopsis thaliana. Plant Phys 102: 379–386.Google Scholar
  5. 5.
    Facchini P (2001) Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol. 52: 29–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Morton LW, Abu-Amsha Caccetta R, Puddey IB, Croft KD (2000) Chemistry and biological effects of dietary phenolic compounds: Relevance to cardiovascular disease. Clin Exp Pharmacol Physiol 27: 152–159.PubMedCrossRefGoogle Scholar
  7. 7.
    Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, et al (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322: 339–346.PubMedCrossRefGoogle Scholar
  8. 8.
    Friedman M (2006) Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. J Agric Food Chem 54: 8655–8681.PubMedCrossRefGoogle Scholar
  9. 9.
    Sanoner P, Guyot S, Marnet N, Molle D, Drilleau JF (1999) Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J Agric Food Chem 47: 4847–4853.PubMedCrossRefGoogle Scholar
  10. 10.
    Friedman M, McDonald GM (1997) Potato glycoalkaloids: Chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16: 55–132.Google Scholar
  11. 11.
    Flanders KL, Hawkes JG, Radcliffe EB, Lauer FI (1992) Insect resistance in potatoes – Sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica 61: 83–111.CrossRefGoogle Scholar
  12. 12.
    Cipollini ML, Levey DJ (1997) Why are some fruits toxic? Glycoalkaloids in solanum and fruit choice by vertebrates. Ecology 78: 782–798.Google Scholar
  13. 13.
    Kreutzmann S, Christensen LP, Edelenbos M (2008) Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analyses. Lwt-Food Sci Technol 41: 193–205.CrossRefGoogle Scholar
  14. 14.
    Friedman M, Henika PR, Mackey BE (1996) Feeding of potato, tomato and eggplant alkaloids affects food consumption and body and liver weights in mice. J Nutr 126: 989–999.PubMedGoogle Scholar
  15. 15.
    Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7: 366–373.PubMedCrossRefGoogle Scholar
  16. 16.
    Klimankova E, Holadova K, Hajslova J, Cajka T, Poustka J, et al (2008) Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem 107: 464–472.CrossRefGoogle Scholar
  17. 17.
    Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, et al (2004) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol 136: 3724–3736.PubMedCrossRefGoogle Scholar
  18. 18.
    Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134: 370–379.PubMedCrossRefGoogle Scholar
  19. 19.
    Allegrone G, Belliardo F, Cabella P (2006) Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties. J Agric Food Chem 54: 1844–1848.PubMedCrossRefGoogle Scholar
  20. 20.
    Choi HS, Sawamura M (2001) Volatile flavor components of ripe and overripe Ki-mikans (Citrus flaviculpus Hort. ex Tanaka) in comparison with Hyuganatsu (Citrus tamurana Hort. ex Tanaka). Biosci Biotechnol Biochem 65: 48–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, et al (2006) xThe products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103: 1129–1134.PubMedCrossRefGoogle Scholar
  22. 22.
    Kollner TG, Schnee C, Gershenzon J, Degenhardt J (2004) The variability of sesquiterpenes cultivars is controlled by allelic emitted from two Zea mays variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16: 1115–1131.PubMedCrossRefGoogle Scholar
  23. 23.
    Baldwin EA, Goodner K, Plotto A, Pritchett K, Einstein M (2004) Effect of volatiles and their concentration on perception of tomato descriptors. J Food Sci 69: S310–S318.CrossRefGoogle Scholar
  24. 24.
    Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, et al (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127: 1256–1265.PubMedCrossRefGoogle Scholar
  25. 25.
    Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, et al (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J Exp Bot 58: 4131–4146.PubMedCrossRefGoogle Scholar
  26. 26.
    Tikunov Y, Lommen A, de Vos CHR, Verhoeven HA, Bino RJ, et al (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139: 1125–1137.PubMedCrossRefGoogle Scholar
  27. 27.
    Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum 97: 194–208.CrossRefGoogle Scholar
  28. 28.
    Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2: 425–431.CrossRefGoogle Scholar
  29. 29.
    Hogge LR, Reed DW, Underhill EW, Haughn GW (1988) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospary liquid chromatography-mass spectometry. J Chrom Sci 26: 551–556.Google Scholar
  30. 30.
    Graser G, Schneider B, Oldham NJ, Gershenzon J (2000) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Arch Biochem Biophys 378: 411–419.PubMedCrossRefGoogle Scholar
  31. 31.
    de Quiros HC, Magrath R, McCallum D, Kroymann J, Schnabelrauch D, et al (2000) α-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor Appl Genet 101: 429–437.CrossRefGoogle Scholar
  32. 32.
    Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of the benzylglucosinolate. J Biol Chem 275: 14659–14666.PubMedCrossRefGoogle Scholar
  33. 33.
    Kahn RA, Fahrendorf T, Halkier BA, Moller BL (1999) Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch Biochem Biophys 363: 9–18.PubMedCrossRefGoogle Scholar
  34. 34.
    Kliebenstein D, Lambrix V, Reichelt M, Gershenzon J, Mitchell-Olds T (2001) Gene duplication and the diversification of secondary metabolism: side chain modification of glucosinolates in Arabidopsis thaliana. Plant Cell 13: 681–693.PubMedCrossRefGoogle Scholar
  35. 35.
    Hansen BG, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50: 902–910.PubMedCrossRefGoogle Scholar
  36. 36.
    Textor S, de Kraker JW, Hause BG, Tokuhisa JG (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol 144: 60–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytologist 175: 176–184.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Z-Y, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18: 1524–1536.PubMedCrossRefGoogle Scholar
  39. 39.
    Li Q, Eigenbrode SD, Stringham GR, Thiagarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26: 2401–2419.CrossRefGoogle Scholar
  40. 40.
    Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein D, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13: 2793–2807.PubMedCrossRefGoogle Scholar
  41. 41.
    Barth C, Jander G (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46: 549–562.PubMedCrossRefGoogle Scholar
  42. 42.
    Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317: 1561–1563.PubMedCrossRefGoogle Scholar
  43. 43.
    Donkin SG, Eiteman MA, Williams PL (1995) Toxicity of glucosinolates and their enzymatic decomposition products to Caenorhabditis elegans. J Nematol 27: 258–262.PubMedGoogle Scholar
  44. 44.
    Mithen RF, Lewis BG, Fenwick GR (1986) In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Trans Br Mycol Soc 87: 433–440.CrossRefGoogle Scholar
  45. 45.
    Tierens K-J, Thomma B, Brower M, Schmidt J, Kistner K, et al (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125: 1688–1699.PubMedCrossRefGoogle Scholar
  46. 46.
    Fahey JW, Zhang YS, Talalay P (1997) Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94: 10367–10372.PubMedCrossRefGoogle Scholar
  47. 47.
    Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, et al (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci USA 99: 7610–7615.PubMedCrossRefGoogle Scholar
  48. 48.
    Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159: 359–370.PubMedGoogle Scholar
  49. 49.
    Parkin I, Magrath R, Keith D, Sharpe A, Mithen R, et al (1994) Genetis of aliphatic glucosinolates. II. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity 72: 594–598.CrossRefGoogle Scholar
  50. 50.
    Mithen R, Clarke J, Lister C, Dean C (1995) Genetics of aliphatic glucosinolates.III. Side-chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity 74: 210–215.CrossRefGoogle Scholar
  51. 51.
    Magrath R, Bano F, Morgner M, Parkin I, Sharpe A, et al (1994) Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72: 290–299.CrossRefGoogle Scholar
  52. 52.
    Giamoustaris A, Mithen R (1996) Genetics of aliphatic glucosinolates.IV. Side-chain modification in Brassica oleracea. Theor Appl Genet 93: 1006–1010.CrossRefGoogle Scholar
  53. 53.
    Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, et al (2007) Linking metabolic QTL with network and cis-eQTL controlling biosynthetic pathways. PLOS Genetics 3: e162.CrossRefGoogle Scholar
  54. 54.
    Toroser D, Thormann C, Osborn T, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate content in oilseed rape (Brassica napus L.). Theor Appl Genet 91: 802–808.CrossRefGoogle Scholar
  55. 55.
    Rodman J (1980) Population variation and hybridization in sea-rockets (Cakile, Cruciferae): Seed glucosinolate characters. Am J Bot 67: 1145–1159.CrossRefGoogle Scholar
  56. 56.
    Rodman JE, Kruckeberg AR, Alshehbaz IA (1981) Chemotaxonomic diversity and complexity in seed glucosinolates of Caulanthus and Streptanthus (Cruciferae). Syst Bot 6: 197–222.CrossRefGoogle Scholar
  57. 57.
    Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinkler AM, et al (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30: 2623–2638.CrossRefGoogle Scholar
  58. 58.
    Mithen R, Toroser D (1995) Biochemical genetics of aliphatic glucosinolates in Brassica and Arabidopsis. Soc Exp Biol Semin Ser 56: 261–275.Google Scholar
  59. 59.
    Parkin I, Magrath R, Keith D, Sharpe A, Mithen R, et al (1994) Genetics of aliphatic glucosinolates. II. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity 72: 594–598.CrossRefGoogle Scholar
  60. 60.
    Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13: 72–77.PubMedCrossRefGoogle Scholar
  61. 61.
    Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, et al (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLos ONE 2: e1322.PubMedCrossRefGoogle Scholar
  62. 62.
    Kliebenstein DJ (2008) A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLos ONE 3: e1838.PubMedCrossRefGoogle Scholar
  63. 63.
    West MAL, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, et al (2007) Global eQTL mapping reveals the complex genetic architecture of transcript level variation in Arabidopsis. Genetics 175: 1441–1450.PubMedCrossRefGoogle Scholar
  64. 64.
    Van Leeuwen H, Kliebenstein DJ, West MAL, kim KD, van Poecke R, et al (2007) Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell 19: 2099–2110.PubMedCrossRefGoogle Scholar
  65. 65.
    Kliebenstein DJ, West MAL, Van Leeuwen H, Kyunga K, Doerge RW, et al (2006) Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics 172: 1179–1189.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhao KY, Aranzana MJ, Kim S, Lister C, Shindo C, et al (2007) An Arabidopsis example of association mapping in structured samples. Plos Genetics 3: e4.PubMedCrossRefGoogle Scholar
  67. 67.
    Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30: 190–193.PubMedCrossRefGoogle Scholar
  68. 68.
    Belo A, Zheng PZ, Luck S, Shen B, Meyer DJ, et al (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279: 1–10.PubMedCrossRefGoogle Scholar
  69. 69.
    Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, et al (2004) Linkage disequilibrium and sequence diversity in a 500-kbp region around the adh1 locus in elite maize germplasm. Theor Appl Genet 109: 681–689.PubMedCrossRefGoogle Scholar
  70. 70.
    Xie Z, Kapteyn J, Gang DR (2008) A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J 54: 349–361.PubMedCrossRefGoogle Scholar
  71. 71.
    Vieira JV, Charchar JM, Aragao FAS, Boiteux LS (2003) Heritability and gain from selection for field resistance against multiple root-knot nematode species (Meloidogyne incognita race 1 and M-javanica) in carrot. Euphytica 130: 11–16.CrossRefGoogle Scholar
  72. 72.
    Simon PW, Matthews WC, Roberts PA (2000) Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor Appl Genet 100: 735–742.CrossRefGoogle Scholar
  73. 73.
    Wang M, Goldman IL (1996) Resistance to root knot nematode (Meloidogyne hapla Chitwood) in carrot is controlled by two recessive genes. J Heredity 87: 119–123.Google Scholar
  74. 74.
    Kliebenstein DJ, Pedersen D, Mitchell-Olds T (2002) Comparative analysis of insect resistance QTL and QTL controlling the myrosinase/glucosinolate system in Arabidopsis thaliana. Genetics 161: 325–332.PubMedGoogle Scholar
  75. 75.
    Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57: 303–333.PubMedCrossRefGoogle Scholar
  76. 76.
    Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, et al (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101: 4859–4864.PubMedCrossRefGoogle Scholar
  77. 77.
    Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99: 11223–11228.PubMedCrossRefGoogle Scholar
  78. 78.
    Renwick J, Chew F (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39: 377–400.CrossRefGoogle Scholar
  79. 79.
    Chew FS, Renwick JAA (1994) Host plant choice in Pieris butterflies. In: Bell RTCaWJ, editor. Chemical Ecology of Insects II. New York: Chapman & Hall, pp. 214–238.Google Scholar
  80. 80.
    Renwick JAA, Haribal M, Gouinguene S, Stadler E (2006) Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J Chem Ecol 32: 755–766.PubMedCrossRefGoogle Scholar
  81. 81.
    Lankau RA, Strauss SY (2008) Community complexity drives patterns of natural selection on a chemical defense of Brassica nigra. Am Naturalist 171: 150–161.CrossRefGoogle Scholar
  82. 82.
    Karban R, Baldwin IT (1997) Induced Responses to Herbivory. Chicago, IL: University of Chicago Press.Google Scholar
  83. 83.
    Heil M, Baldwin IT (2002) Fitness costs of induced resistance: Emerging experimental support for a slippery concept. Trends Plant Sci 7: 61–67.PubMedCrossRefGoogle Scholar
  84. 84.
    Mauricio R (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Naturalist 151: 20–28.CrossRefGoogle Scholar
  85. 85.
    Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51: 1435–1444.CrossRefGoogle Scholar
  86. 86.
    Baldwin IT, Hamilton W (2000) Jasmonate-induced responses of Nicotiana sylvestris results in fitness costs due to impaired competitive ability for nitrogen. J Chem Ecol 26: 915–952.CrossRefGoogle Scholar
  87. 87.
    Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95: 8113–8118.PubMedCrossRefGoogle Scholar
  88. 88.
    Kant MR, Baldwin IT (2007) The ecogenetics and ecogenomics of plant-herbivore interactions: Rapid progress on a slippery road. Curr Opin Genet Dev 17: 519–524.PubMedCrossRefGoogle Scholar
  89. 89.
    Glawe GA, Zavala JA, Kessler A, Van Dam NM, Baldwin IT (2003) Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuata. Ecology 84: 79–90.CrossRefGoogle Scholar
  90. 90.
    Kliebenstein DJ, Figuth A, Mitchell-Olds T (2002) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161: 1685–1696.PubMedGoogle Scholar
  91. 91.
    Strauss SY, Irwin RE, Lambrix VM (2004) Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish. J Ecol 92: 132–141.CrossRefGoogle Scholar
  92. 92.
    Byrne PF, McMullen MD, Wiseman BR, Snook ME, Musket TA, et al (1998) Maize silk maysin concentration and corn earworm antibiosis: QTLs and genetic mechanisms. Crop Sci 38: 461–471.CrossRefGoogle Scholar
  93. 93.
    Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: Variation in host production and pathogen sensitivity. Plant J 44: 25–36.PubMedCrossRefGoogle Scholar
  94. 94.
    Quidde T, Osbourn AE, Tudzynski P (1998) Detoxification of alpha-tomatine by Botrytis cinerea. Physiol Mol Plant Pathol 52: 151–165.CrossRefGoogle Scholar
  95. 95.
    Pedras MSC, Khan AQ (1997) Unprecedented detoxification of the phytoalexin camalexin by a root rot pathogen. Bioorg Med Chem Lett 7: 2255–2260.CrossRefGoogle Scholar
  96. 96.
    Pedras MSC, Ahiahonu PWK (2002) Probing the phytopathogenic stem rot fungus with phytoalexins and analogs: unprecedented glucosylation of camalexin and 6-methoxycamalexin. Bioorg Med Chem 10: 3307–3312.PubMedCrossRefGoogle Scholar
  97. 97.
    Adrian M, Rajaei H, Jeandet P, Veneau J, Bessis R (1998) Resveratrol oxidation in Botrytis cinerea conidia. Phytopathology 88: 472–476.PubMedCrossRefGoogle Scholar
  98. 98.
    de Waard MA, Andrade AC, Hayashi K, Schoonbeek HJ, Stergiopoulos I, et al (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci 62: 195–207.PubMedCrossRefGoogle Scholar
  99. 99.
    Schoonbeek H, Del Sorbo G, De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant-Microbe Interact 14: 562–571.PubMedCrossRefGoogle Scholar
  100. 100.
    Falk KL, Gershenzon J (2007) The desert locust, Schistocerca gregaria, detoxifies the glucosinolates of Schouwia purpurea by desulfation. J Chem Ecol 33: 1542–1555.PubMedCrossRefGoogle Scholar
  101. 101.
    Matusheski NV, Swarup R, Juvik JA, Mithen R, Bennett M, et al (2006) Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. J Agric Food Chem 54: 2069–2076.PubMedCrossRefGoogle Scholar
  102. 102.
    Mithen R, Faulkner K, Magrath R, Rose P, Williamson G, et al (2003) Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Genet 106: 727–734.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA

Personalised recommendations