Skip to main content

Metabolomics and the Detection of Unintended Effects in Genetically Modified Crops

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

The chapter describes current procedures for the safety assessment of genetically modified crops and foods. The concepts of substantial equivalence, the conventional comparator, and intended and unintended effects are introduced. Most published examples of substantial equivalence testing deal with crops that have been modified for insect resistance or herbicide tolerance. A standard procedure has developed based on broadly similar field trial designs, sampling schemes and targeted analyses of a consensus set of compounds for each crop. The main characteristics of the procedure are summarised with reference to published analyses of this type of crop and different statistical approaches to judging ‘equivalence’ are discussed.

There is a current trend towards development of crops with enhanced nutritional properties or health-related benefits through genetic modification of metabolic pathways. These more complex modifications have greater potential for introducing unpredictable unintended effects, and it may be advisable to supplement current targeted analysis procedures with metabolomics methods. The second part of the chapter discusses the application of metabolomics to substantial equivalence testing. As yet there is no standard procedure for this approach so individual studies, which differ greatly in size and scope, are discussed. The major analytical techniques (GC/MS, LC/MS and NMR) are briefly described and examples of their use are given: a few studies have shown how the massive amounts of data produced by non-targeted profiling methods may be treated to judge equivalence. Some limitations need to be overcome before metabolomics can be adopted as part of the official safety assessment procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

ANOVA:

Analysis of Variance

AOAC:

Association of Analytical Communities

COSY:

Correlation Spectroscopy

DIMS:

Direct Injection Mass Spectrometry

DP:

Degree of Polymerisation

EFSA:

European Food Safety Authority

ESI:

Electrospray Ionisation

FAO/WHO:

Food and Agriculture Organisation/ World Health Organisation

FIE-MS:

Flow Injection Electrospray Mass Spectrometry

FT-ICR-MS:

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

FTIR:

Fourier Transform Infrared

GC/FID:

Gas Chromatography/ Flame Ionisation Detector

GC/MS:

Gas Chromatography/ Mass Spectrometry

GC-TOF-MS:

Gas Chromatography-Time of Flight-Mass Spectrometry

GM:

Genetically Modified

HMBC:

Heteronuclear Multiple Bond Correlation

HPLC:

High Performance Liquid Chromatography

HSQC:

Heteronuclear Single Quantum Coherence

ILSI:

International Life Sciences Institute

LC/MS:

Liquid Chromatography/ Mass Spectrometry

LDA:

Linear Discriminant Analysis

MAS:

Magic Angle Spinning

NMR:

Nuclear Magnetic Resonance

OECD:

Organisation for Economic Cooperation and Development

PC:

Principal Component

PCA:

Principal Component Analysis

PLS:

Partial Least Squares

PLS-DA:

Partial Least Squares-Discriminant Analysis

RT:

Retention Time

SD:

Standard Deviation

SPE:

Solid Phase Extraction

TOCSY:

Total Correlation Spectroscopy

UV:

Ultraviolet

References

  • Aharoni A, de Vos CHR, Verhoeven HA, et al. (2002) Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. OMICS 6:217–234

    Article  PubMed  CAS  Google Scholar 

  • Baker JM, Hawkins ND, Ward JL, et al. (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotech J 4:381–392

    Article  CAS  Google Scholar 

  • Catchpole GS, Beckmann M, Enot DP, et al. (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. PNAS 102:14458–14462

    Article  PubMed  CAS  Google Scholar 

  • Cellini F, Chesson A, Colquhoun I, et al. (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125

    Article  PubMed  CAS  Google Scholar 

  • Charlton A, Allnutt T, Holmes S, et al. (2004) NMR profiling of transgenic peas. Plant Biotech J 2:27–35

    Article  CAS  Google Scholar 

  • Colquhoun I J (2007) Use of NMR for metabolic profiling in plant systems J Pestic Sci 32:200–212

    Article  CAS  Google Scholar 

  • De Vos R C, Moco S, Lommen A, et al. (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protocols 2:778–791

    Article  Google Scholar 

  • Defernez M, Colquhoun IJ (2004) NMR approaches to detect unintended effects of genetic modification in plants. In: Nap J P H, Atanassov A and Stiekema W J (ed) Genomics for biosafety in plant biotechnology, NATO science series, IOS press.

    Google Scholar 

  • Defernez M, Gunning YM, Parr AJ, et al. (2004) NMR and HPLC-UV Profiling of Potatoes with Genetic Modifications to Metabolic Pathways. J Agric Food Chem 52:6075–6085

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2005) Engineering of plant natural product pathways Curr Opin Plant Biol 8: 329–336

    Article  PubMed  CAS  Google Scholar 

  • (2006) Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food and feed. EFSA J 99:1–100

    Google Scholar 

  • EFSA GMO Panel (2008) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials Food Chem Toxicol 46: S2–S70

    Google Scholar 

  • Enot D, Beckmann M, Draper J (2007) Detecting a difference – assessing generalisability when modelling metabolome fingerprint data in longer term studies of genetically modified plants. Metabolomics 3:335–347

    Article  Google Scholar 

  • FAO/WHO (2000) Safety Aspects of Genetically Modified Foods of Plant Origin. Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, Geneva, Switzerland, 29 May-2 June 2000. FAO, Rome http://www.who.int/foodsafety/publications/biotech/ec_june2000/en/index.html

    Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, et al. (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, et al. (2000) Metabolite profiling for plant functional genomics. Nat Biotech 18:1157

    Article  CAS  Google Scholar 

  • Fiehn O, Wohlgemuth G, Scholz M, et al. (2008) Quality control for plant metabolomics: reporting MSI-compliant studies Plant J 53: 691–704

    Article  PubMed  CAS  Google Scholar 

  • Frenzel T, Miller A, Engel K H (2002) Metabolite profiling – A fractionation method for analysis of major and minor compounds in rice grains. Cereal Chem 79:215–221

    Article  CAS  Google Scholar 

  • George C, Ridley WP, Obert JC, et al. (2004) Composition of grain and forage from corn rootworm-protected corn event MON 863 is equivalent to that of conventional corn (Zea mays L.). J Agric Food Chem 52:4149–4158

    Article  PubMed  CAS  Google Scholar 

  • Grata E, Boccard J, Guillarme D, et al. (2008) UPLC-TOF-MS for plant metabolomics: A sequential approach for wound marker analysis in Arabidopsis thaliana. J Chrom B (2008) 871: 261–270

    Article  CAS  Google Scholar 

  • Gullberg J, Jonsson P, Nordström A, et al. (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry Anal Biochem 331:283–295

    Article  PubMed  CAS  Google Scholar 

  • Harrigan GG, Ridley WP, Riordan SG (2007) Chemical composition of glyphosate-tolerant soybean 40–3–2 grown in Europe remains equivalent with that of conventional soybean (Glycine max L.). J Agric Food Chem 55:6160–6168

    Article  PubMed  CAS  Google Scholar 

  • Herman RA, Phillips AM, Collins RA, et al. (2004) Compositional equivalency of Cry1F corn event TC6275 and conventional corn (Zea mays L.). J Agric Food Chem 52:2726–2734

    Article  PubMed  CAS  Google Scholar 

  • Herman RA, Storer NP, Phillips AM, et al. (2007) Compositional assessment of event DAS-59122–7 maize using substantial equivalence. Regul Toxicol Pharmacol 47:37–47

    Article  PubMed  CAS  Google Scholar 

  • Holmes E, Tang H, Wang Y, et al. (2006) The assessment of plant metabolite profiles by NMR-Based methodologies. Planta Medica:771–785

    Google Scholar 

  • Hothorn LA, Oberdoerfer R (2006) Statistical analysis used in the nutritional assessment of novel food using the proof of safety. Regul Toxicol Pharmacol 44:125–135

    Article  PubMed  Google Scholar 

  • Iijima Y, Nakamura Y, Ogata Y, et al. (2008) Metabolite annotations based on the integration of mass spectral information. 54:949–962

    CAS  Google Scholar 

  • Jacobs A, Lunde C, Bacic A, et al. (2007) The impact of constitutive heterologous expression of a moss Na + transporter on the metabolomes of rice and barley. Metabolomics 3:307–317

    Article  CAS  Google Scholar 

  • Katajamaa M, Orešič M (2007) Data processing for mass spectrometry-based metabolomics J. Chromatogr. A 1158:318–328

    Article  CAS  Google Scholar 

  • Kemsley E K, Le Gall G, Dainty J R et al. (2007) Multivariate techniques and their application in nutrition: a metabolomics case study Br J Nutr 98:1–14

    Article  PubMed  CAS  Google Scholar 

  • Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7:234

    Article  PubMed  Google Scholar 

  • Kok EJ, Keijer J, Kleter GA, Kuiper HA (2008) Comparative safety assessment of plant-derived foods Regul Toxicol Pharmacol 50: 98–113

    Article  PubMed  CAS  Google Scholar 

  • König A, Cockburn A, Crevel RWR, et al. (2004) Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem Toxicol 42:1047–1088

    Article  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, et al. (2005) GMD@CSB DB: the Golm Metabolome Database, Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Krishnan P, Kruger N J, Ratcliffe R G (2005) Metabolite fingerprinting and profiling in plants using NMR J Exp Bot 56:255–265

    Article  PubMed  CAS  Google Scholar 

  • Kristensen C, Morant M, Olsen CE, et al. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. PNAS 102:1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Le Gall G, Colquhoun I J, Davis A L, et al. (2003) Metabolite Profiling of Tomato (Lycopersicon esculentum) Using 1H NMR Spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric. Food Chem 51:2447–2456

    Article  PubMed  Google Scholar 

  • Li X, Huang K, He X, et al. (2007) Comparison of nutritional quality between Chinese Indica rice with sck and cry1Ac genes and its nontransgenic counterpart. J Food Sci 72:S420–S424

    Article  PubMed  CAS  Google Scholar 

  • Limentani GB, Ringo MC, Ye F, et al. (2005) Beyond the t-test: Statistical equivalence testing. Anal Chem 77: 221A–226A

    Article  PubMed  CAS  Google Scholar 

  • Lisec, J, Schauer N, Kopka J, et al. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protocols 1: 387–396

    Article  CAS  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, et al. (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • McCann MC, Liu K, Trujillo WA, et al. (2005) Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing. J Agric Food Chem 53:5331–5335

    Article  PubMed  CAS  Google Scholar 

  • Manetti C, Bianchetti C, Bizzarri M, et al. (2004) NMR-based metabonomic study of transgenic maize. Phytochemistry 65:3187–3198

    Article  PubMed  CAS  Google Scholar 

  • Manetti C, Bianchetti C, Casciani L, et al. (2006) A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. J Exp Bot 57:2613–2625

    Article  PubMed  CAS  Google Scholar 

  • Matsuda F, Yamada T, Miyazawa H, et al. (2005) Characterization of tryptophan-overproducing potato transgenic for a mutant rice anthranilate synthase α-subunit gene (OASA1D). Planta 222:535–545

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Sobolev AP, Neelam A, et al. (2006) Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol. 142:1759–1770

    Article  PubMed  CAS  Google Scholar 

  • Millstone E, Brunner E, Mayer S (1999) Beyond ‘substantial equivalence’. Nature 401:525–526

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerfer RB, Shillito RD, De Beuckeleer M, et al. (2005) Rice (Oryza sativa L.) Containing the bar gene is compositionally equivalent to the nontransgenic counterpart. J Agric Food Chem 53:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Obert JC, Ridley WP, Schneider RW, et al. (2004) The composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.). J Agric Food Chem 52:1375–1384

    Article  PubMed  CAS  Google Scholar 

  • OECD (1993) Safety evaluation of foods derived by modern biotechnology: concepts and principles. OECD, Paris

    Google Scholar 

  • Oikawa A, Nakamura Y, Ogura T, et al. (2006) Clarification of pathway-specific inhibition by Fourier Transform Ion Cyclotron Resonance/Mass Spectrometry-based metabolic phenotyping studies. Plant Physiol 142:398–413

    Article  PubMed  CAS  Google Scholar 

  • Parr AJ, Mellon FA, Colquhoun IJ, Davies HV (2005) Dihydrocaffeoyl polyamines (kukoamine and allies) in potato (Solanum tuberosum) tubers detected during metabolite profiling. J Agric Food Chem 53:5461–5466

    Article  PubMed  CAS  Google Scholar 

  • Poulsen M, Schrøder M, Wilcks A, et al. (2007) Safety testing of GM-rice expressing PHA-E lectin using a new animal test design Food Chem Toxicol 45: 364–377

    Article  PubMed  CAS  Google Scholar 

  • Renwick AG (2004) Risk characterisation of chemicals in food Toxicol Lett 149: 163–176

    Article  PubMed  CAS  Google Scholar 

  • Ridley WP, Sidhu RS, Pyla PD, et al. (2002) Comparison of the nutritional profile of glyphosate-tolerant corn event NK603 with that of conventional corn (Zea mays L.). J Agric Food Chem 50:7235–7243

    Article  PubMed  CAS  Google Scholar 

  • Ridley WP, Shillito RD, Coats I, et al. (2004) Development of the international life sciences institute crop composition database. J Food Comp Anal 17:423–438

    Article  CAS  Google Scholar 

  • Roessner U, Willmitzer L, Fernie A (2002) Metabolic profiling and biochemical phenotyping of plant systems. Plant Cell Rep 21:189–196

    Article  CAS  Google Scholar 

  • Rogan GJ, Bookout JT, Duncan DR, et al. (2000) Compositional analysis of tubers from insect and virus resistant potato plants. J Agric Food Chem 48:5936–5945

    Article  PubMed  CAS  Google Scholar 

  • Santos FJ, Galceran MT (2003) Modern developments in gas chromatography-mass spectrometry-based environmental analysis. J Chromatogr A 1000:125–151

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, et al. (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples, FEBS Lett. 579:1332–1337

    Article  PubMed  CAS  Google Scholar 

  • Shepherd LVT, McNicol JW, Razzo R, Taylor MA, Davies HV, McNicol JW. (2006) Assessing the potential for unintended effects in genetically modified potatoes perturbed in metabolic and developmental processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Res 15:409–425

    Article  PubMed  CAS  Google Scholar 

  • Shepherd T, Dobson G, Verrall SR, et al. (2007) Potato Metabolomics by GC-MS: what are the limiting factors? Metabolomics 3: 475–488

    Article  CAS  Google Scholar 

  • Sidhu RS, Hammond BG, Fuchs RL, et al. (2000) Glyphosate-tolerant corn: the composition and feeding value of grain from glyphosate-tolerant corn is equivalent to that of conventional corn (Zea mays L.). J Agric Food Chem 48:2305–2312

    Article  PubMed  CAS  Google Scholar 

  • Sobolev A P, Segre A L, Giannino D, et al. (2007) Strong increase of foliar inulin occurs in transgenic lettuce plants (Lactuca sativa L.) Ooerexpressing the asparagine synthetase a gene from Escherichia coli. J Agric Food Chem. 55:10827–10831

    Article  PubMed  CAS  Google Scholar 

  • Sumner L, Amberg A, Barrett D, et al. (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221

    Article  CAS  Google Scholar 

  • Van Loo J, Cummings J, Delzenne N, et al. (1999) Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94–1095). Br J Nutr 81:121–132

    PubMed  Google Scholar 

  • Wakasa K, Hasegawa H, Nemoto H, et al. (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069–3078

    Article  PubMed  CAS  Google Scholar 

  • Wold H (1984) PLS regression. In: Johnson NL, Kotz S (eds) Encyclopedia of statistical sciences. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Colquhoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shintu, L., Le Gall, G., Colquhoun, I.J. (2009). Metabolomics and the Detection of Unintended Effects in Genetically Modified Crops. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_22

Download citation

Publish with us

Policies and ethics