Genome Wide Approaches in Natural Product Research

  • Jürgen Ehlting
  • Björn Hamberger
  • Jean-François Ginglinger
  • Danièle Werck-Reichhart


Within the last decade, the strategy for pathway discovery in plant secondary metabolism has reversed from a metabolite to protein to gene approach to a gene to pathway strategy. Different genome-wide “omics” strategies apply to gene discovery in model plants with sequenced genomes and plants of pharmaceutical or industrial interest. In this chapter, we provide a brief description as well as a few examples of the main approaches that have so far been applied to plant metabolism. Combination of such global approaches leads to the new field of ‘integrative biology’, which highlights metabolic networks connecting the different branches of primary and “secondary” metabolism.


Glandular Trichome Full Length cDNA Sequence Opium Poppy Terpenoid Indole Alkaloid Sweet Basil 


  1. 1.
    Lepiniec, L., Debeaujon, I., Routaboul, J.M., Baudry, A., Pourcel, L., Nesi, N., and Caboche, M. 2006. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57: 405-430.PubMedGoogle Scholar
  2. 2.
    Trojanowska, M.R., Osbourn, A.E., Daniels, M.J., and Threlfall, D.R. 2001. Investigation of avenacin-deficient mutants of Avena strigosa. Phytochem 56: 121-129.Google Scholar
  3. 3.
    Humphreys, J.M. and Chapple, C. 2002. Rewriting the lignin roadmap. Curr Opin Plant Biol 5: 224-229.PubMedGoogle Scholar
  4. 4.
    Nomura, T. and Bishop, G.J. 2006. Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5: 421-432.Google Scholar
  5. 5.
    Takei, K., Yamaya, T., and Sakakibara, H. 2004. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279: 41866-41872.PubMedGoogle Scholar
  6. 6.
    Abdulrazzak, N., Pollet, B., Ehlting, J., Larsen, K., Asnaghi, C., Ronseau, S., Proux, C., Erhardt, M., Seltzer, V., Renou, J.P., Ullmann, P., Pauly, M., Lapierre, C., and Werck-Reichhart, D. 2006. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140: 30-48.PubMedGoogle Scholar
  7. 7.
    Aubourg, S., Lecharny, A., and Bohlmann, J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267: 730-745.PubMedGoogle Scholar
  8. 8.
    Hemm, M.R., Ruegger, M.O., and Chapple, C. 2003. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15: 179-194.PubMedGoogle Scholar
  9. 9.
    The Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:716-8Google Scholar
  10. 10.
    International Rice Genome Sequencing Project 2005. The map-based sequence of the rice genome. Nature 436: 793-800.Google Scholar
  11. 11.
    Paterson, A., Bowers, J., Kresovich, S., Hash, C., Messing, J., Peterson, D., Schmutz, J., and Rokhsar, D. Phytozome Sorghum bicolor. . 2007.
  12. 12.
    Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R.R., Bhalerao, R.P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G.L., Cooper, D., Coutinho, P.M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Dejardin, A., dePamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Leple, J.C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D.R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C.J., Uberbacher, E., Unneberg, P., Vahala, J., Wall, K., Wessler, S., Yang, G., Yin, T., Douglas, C., Marra, M., Sandberg, G., Van de Peer, Y., and Rokhsar, D. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596-1604.PubMedGoogle Scholar
  13. 13.
    The French-Italian Public Consortium for Grapevine Genome Characterization 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-467.Google Scholar
  14. 14.
    Rabinowicz, P., Ravel, J., Chan, A., Melake, A., Wortman, J., Zhao, Q., Orvis, J., and Puiu, D. TIGR: Castor Bean Genome Database. . 2007.
  15. 15.
    Ming, R., Hou, S., Feng, Y., Yu Qonne-Laporte, A., Saw, J.H., Senin, P., Wang, W., Ly, B.V., Lewis, K.L., Salzberg, S.L., Feng, L., Jones, M.R., Skelton, R.L., Murray, J.E., Chen, C., Qian, W., Shen, J., Du, P., Eustice, M., Tong, E., Tang, H., Lyons, E., Paull, R.E., Michael, T.P., Wall, K., Rice, D.W., Albert, H., Wang, M.L., Zhu, Y.J., Schatz, M., Nagarajan, N., Acob, R.A., Guan, P., Blas, A., Wai, C.M., Ackerman, C.M., Ren, Y., Liu, C., Wang, J., Wang, J., Na, J.K., Shakirov, E.V., Haas, B., Thimmapuram, J., Nelson, D., Wang, X., Bowers, J.E., Gschwend, A.R., Delcher, A.L., Singh, R., Suzuki, J.Y., Tripathi, S., Neupane, K., Wei, H., Irikura, B., Paidi, M., Jiang, N., Zhang, W., Presting, G., Windsor, A., Navajas-Perez, R., Torres, M.J., Feltus, F.A., Porter, B., Li, Y., Burroughs, A.M., Luo, M.C., Liu, L., Christopher, D.A., Mount, S.M., Moore, P.H., Sugimura, T., Jiang, J., Schuler, M.A., Friedman, V., Mitchell-Olds, T., Shippen, D.E., dePamphilis, C.W., Palmer, J.D., Freeling, M., Paterson, A.H., Gonsalves, D., Wang, L., and Alam, M. 2008. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452: 991-996.PubMedGoogle Scholar
  16. 16.
    Bentley, D.R. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16: 545-552.PubMedGoogle Scholar
  17. 17.
    Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Buillard, V., Cerutti, L., Copley, R., Courcelle, E., Das, U., Daugherty, L., Dibley, M., Finn, R., Fleischmann, W., Gough, J., Haft, D., Hulo, N., Hunter, S., Kahn, D., Kanapin, A., Kejariwal, A., Labarga, A., Langendijk-Genevaux, P.S., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McAnulla, C., McDowall, J., Mistry, J., Mitchell, A., Nikolskaya, A.N., Orchard, S., Orengo, C., Petryszak, R., Selengut, J.D., Sigrist, C.J.A., Thomas, P.D., Valentin, F., Wilson, D., Wu, C.H., and Yeats, C. 2007. New developments in the InterPro database. Nucleic Acids Res 35: D224-D228.PubMedGoogle Scholar
  18. 18.
    Nelson, D.R., Schuler, M.A., Paquette, S.M., Werck-Reichhart, D., and Bak, S. 2004. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135: 756-772.Google Scholar
  19. 19.
    Vogt, T. and Jones, P. 2000. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5: 380-386.PubMedGoogle Scholar
  20. 20.
    Bak, S., Nielsen, H., and Halkier, B. 1998. The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol Biol 38: 725-734.PubMedGoogle Scholar
  21. 21.
    Kandel, S., Sauveplane, V., Olry, A., Diss, L., Benveniste, I., and Pinot, F. 2006. Cytochrome P450-dependent fatty acid hydroxylases in plants. Phytochem Rev 5: 359-372.Google Scholar
  22. 22.
    Stumpe, M. and Feussner, I. 2006. Formation of oxylipins by CYP74 enzymes. Phytochem Rev 5: 347-357.Google Scholar
  23. 23.
    Bishop, G., Nomura, T., Yokota, T., Montoya, T., Castle, J., Harrison, K., Kushiro, T., Kamiya, Y., Yamaguchi, S., Bancos, S., Szatmari, A.M., and Szekeres, M. 2006. Dwarfism and cytochrome P450-mediated C-6 oxidation of plant steroid hormones. Biochem Soc Trans 34: 1199-1201.PubMedGoogle Scholar
  24. 24.
    Ohnishi, T., Szatmari, A.M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., and Mizutani, M. 2006. C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18: 3275-3288.PubMedGoogle Scholar
  25. 25.
    Ehlting, J., Buttner, D., Wang, Q., Douglas, C.J., Somssich, I.E., and Kombrink, E. 1999. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19: 9-20.PubMedGoogle Scholar
  26. 26.
    Hamberger, B. and Hahlbrock, K. 2004. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci USA 101: 2209-2214.PubMedGoogle Scholar
  27. 27.
    Hull, A.K., Vij, R., and Celenza, J.L. 2000. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97: 2379-2384.PubMedGoogle Scholar
  28. 28.
    Chen, S., Glawischnig, E., Jorgensen, K., Naur, P., Jorgensen, B., Olsen, C.E., Hansen, C.H., Rasmussen, H., Pickett, J.A., and Halkier, B.A. 2003. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33: 923-937.PubMedGoogle Scholar
  29. 29.
    Mikkelsen, M.D., Hansen, C.H., Wittstock, U., and Halkier, B.A. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275: 33712-33717.PubMedGoogle Scholar
  30. 30.
    Wittstock, U. and Halkier, B.A. 2000. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275: 14659-14666.Google Scholar
  31. 31.
    Saito, K., Hirai, M.Y., and Yonekura-Sakakibara, K. 2008. Decoding genes with coexpression networks and metabolomics - ‘majority report by precogs’. Trends Plant Sci 13: 36-43.PubMedGoogle Scholar
  32. 32.
    Aoki, K., Ogata, Y., and Shibata, D. 2007. Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol 48: 381-390.PubMedGoogle Scholar
  33. 33.
    Ehlting, J., Mattheus, N., Aeschliman, D.S., Li, E., Hamberger, B., Cullis, I.F., Zhuang, J., Kaneda, M., Mansfield, S.D., Samuels, L., Ritland, K., Ellis, B.E., Bohlmann, J., and Douglas, C.J. 2005. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42: 618-640.PubMedGoogle Scholar
  34. 34.
    Gachon, C., Langlois-Meurinne, M., Henry, Y., and Saindrenan, P. 2005. Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications. Plant Mol Biol 58: 229-245.PubMedGoogle Scholar
  35. 35.
    Persson, S., Wei, H., Milne, J., Page, G.P., and Somerville, C.R. 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102: 8633-8638.PubMedGoogle Scholar
  36. 36.
    Toufighi, K., Brady, S.M., Austin, R., Ly, E., and Provart, N.J. 2005. The Botany Array Resource: e-northerns, expression angling, and promoter analyses. Plant J 43: 153-163.PubMedGoogle Scholar
  37. 37.
    Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621-2632.Google Scholar
  38. 38.
    Koo, A.J.K., Chung, H.S., Kobayashi, Y., and Howe, G.A. 2006. Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281: 33511-33520.PubMedGoogle Scholar
  39. 39.
    Tohge, T., Nishiyama, Y., Hirai, M.Y., Yano, M., Nakajima, J.I., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D.B., Kitayama, M., Noji, M., Yamazaki, M., and Saito, K. 2005. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42: 218-235.PubMedGoogle Scholar
  40. 40.
    Yonekura-Sakakibara, K., Tohge, T., Niida, R., and Saito, K. 2007. Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282: 14932-14941.PubMedGoogle Scholar
  41. 41.
    Ehlting, J., Sauveplane, V., Olry, A., Ginglinger, J.F., Provart, N.J., and Werck-Reichhart, D. 2008. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol 8: 47.PubMedGoogle Scholar
  42. 42.
    Field, B. and Osbourn, A.E. 2008. Metabolic diversification - independent assembly of operon-like gene clusters in different plants. Science 320: 543-547.PubMedGoogle Scholar
  43. 43.
    Hirai, M.Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., Araki, R., Sakurai, N., Suzuki, H., Aoki, K., Goda, H., Nishizawa, O.I., Shibata, D., and Saito, K. 2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104: 6478-6483.PubMedGoogle Scholar
  44. 44.
    Gang, D.R., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E., and Pichersky, E. 2001. An investigation of the storage and biosynthesis of phenylpropenes in Sweet Basil. Plant Physiol 125: 539-555.PubMedGoogle Scholar
  45. 45.
    Lange, B.M., Wildung, M.R., Stauber, E.J., Sanchez, C., Pouchnik, D., and Croteau, R. 2000. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97: 2934-2939.PubMedGoogle Scholar
  46. 46.
    Guterman, I., Shalit, M., Menda, N., Piestun, D., fny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D. 2002. Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14: 2325-2338.PubMedGoogle Scholar
  47. 47.
    Jennewein, S., Wildung, M.R., Chau, M., Walker, K., and Croteau, R. 2004. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci USA 101: 9149-9154.PubMedGoogle Scholar
  48. 48.
    Choi, D.-W., Jung, J., Ha, Y.I., Park, H.-W., In, D.S., Chung, H.-J., and Liu, J.R. 2005. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports 23: 557-566.PubMedGoogle Scholar
  49. 49.
    Bertea, C.M., Voster, A., verstappen, F.W., Maffei, M., Beekwilder, J., and Bouwmeester, H.J. 2006. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch Biochem Biophys 448: 3-12.PubMedGoogle Scholar
  50. 50.
    Ro, D.K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C., Withers, S.T., Shiba, Y., Sarpong, R., and Keasling, J.D. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940-943.PubMedGoogle Scholar
  51. 51.
    Teoh, K.H., Polichuk, D.R., Reed, D.W., Nowak, G., and Covello, P.S. 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580: 1411-1416.PubMedGoogle Scholar
  52. 52.
    Small, I. 2007. RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18: 148-153.PubMedGoogle Scholar
  53. 53.
    Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., guilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657.PubMedGoogle Scholar
  54. 54.
    Li, Y., Rosso, M.G., Viehoever, P., and Weisshaar, B. 2007. GABI-Kat SsimpleSearch: an Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions. Nucleic Acids Res 35: D874-D878.PubMedGoogle Scholar
  55. 55.
    Miyao, A., Tanaka, K., Murata, K., Sawaki, H., Takeda, S., Abe, K., Shinozuka, Y., Onosato, K., and Hirochika, H. 2003. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15: 1771-1780.PubMedGoogle Scholar
  56. 56.
    Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, J.D., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M., and Goff, S.A. 2002. A high-throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985-2994.PubMedGoogle Scholar
  57. 57.
    Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W., and Feyereisen, R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101-111.PubMedGoogle Scholar
  58. 58.
    Comai, L. and Henikoff, S. 2006. TILLING: practical single-nucleotide mutation discovery. Plant J 45: 684-694.PubMedGoogle Scholar
  59. 59.
    Slade, A.J. and Knauf, V.C. 2005. TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14: 109-115.PubMedGoogle Scholar
  60. 60.
    Yamada, K., Lim, J., Dale, J.M., Chen, H., Shinn, P., Palm, C.J., Southwick, A.M., Wu, H.C., Kim, C., Nguyen, M., Pham, P., Cheuk, R., Karlin-Newmann, G., Liu, S.X., Lam, B., Sakano, H., Wu, T., Yu, G., Miranda, M., Quach, H.L., Tripp, M., Chang, C.H., Lee, J.M., Toriumi, M., Chan, M.M.H., Tang, C.C., Onodera, C., Deng, J.M., Akiyama, K., Ansari, Y., Arakawa, T., Banh, J., Banno, F., Bowser, L., Brooks, S., Carninci, P., Chao, Q., Choy, N., Enju, A., Goldsmith, A.D., Gurjal, M., Hansen, N.F., Hayashizaki, Y., Johnson-Hopson, C., Hsuan, V.W., Iida, K., Karnes, M., Khan, S., Koesema, E., Ishida, J., Jiang, P.X., Jones, T., Kawai, J., Kamiya, A., Meyers, C., Nakajima, M., Narusaka, M., Seki, M., Sakurai, T., Satou, M., Tamse, R., Vaysberg, M., Wallender, E.K., Wong, C., Yamamura, Y., Yuan, S., Shinozaki, K., Davis, R.W., Theologis, A., and Ecker, J.R. 2003. Empirical Analysis of Transcriptional Activity in the Arabidopsis genome. Science 302: 842-846.PubMedGoogle Scholar
  61. 61.
    Gong, W., Shen, Y.P., Ma, L.G., Pan, Y., Du, Y.L., Wang, D.H., Yang, J.Y., Hu, L.D., Liu, X.F., Dong, C.X., Ma, L., Chen, Y.H., Yang, X.Y., Gao, Y., Zhu, D., Tan, X., Mu, J.Y., Zhang, D.B., Liu, Y., Lnesh-Kumar, S.P., Li, Y., Wang, X.P., Gu, H.Y., Qu, L.J., Bai, S.N., Lu, Y.T., Li, J.Y., Zhao, J.D., Zuo, J., Huang, H., Deng, X.W., and Zhu, Y.X. 2004. Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol 135: 773-782.PubMedGoogle Scholar
  62. 62.
    Katsuyama, Y., Matsuzawa, M., Funa, N., and Horinouchi, S. 2007. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J Biol Chem 282: 3770-3779.Google Scholar
  63. 63.
    Bohlmann, J., Martin, D., Oldham, N.J., and Gershenzon, J. 2000. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys 375: 261-269.PubMedGoogle Scholar
  64. 64.
    Chen, F., Tholl, D., D’Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J. 2003. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15: 481-494.Google Scholar
  65. 65.
    Chen, F., Ro, D.K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E., and Tholl, D. 2004. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1, 8-cineole. Plant Physiol 135: 1956-1966.PubMedGoogle Scholar
  66. 66.
    Fäldt, J., Arimura, G.-I., Gershenzon, J., Takabayashi, J., and Bohlmann, J. 2003. Functional identification of AtTPS03 as (E)-ß-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta 216: 745-751.Google Scholar
  67. 67.
    Ro, D.K., Ehlting, J., Keeling, C.I., Lin, R., Mattheus, N., and Bohlmann, J. 2006. Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-gamma-bisabolene synthases. Arch Biochem Biophys 448: 104-116.PubMedGoogle Scholar
  68. 68.
    Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E. 2005. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42: 757-771.PubMedGoogle Scholar
  69. 69.
    Ebizuka, Y., Katsube, Y., Tsutsumi, T., Kushiro, T., and Shibuya, M. 2003. Functional genomics approach to the study of triterpene biosynthesis. Pure Appl Chem 75: 369-374.Google Scholar
  70. 70.
    Fazio, G.C., Xu, R., and Matsuda, S.P.T. 2004. Genome mining to identify new plant triterpenoids. J Am Chem Soc 126: 5678-5679.PubMedGoogle Scholar
  71. 71.
    Husselstein-Muller, T., Schaller, H., and Benveniste, P. 2001. Molecular cloning and expression in yeast of 2, 3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana. Plant Mol Biol 45: 75-92.PubMedGoogle Scholar
  72. 72.
    Kolesnikova, M.D., Wilson, W.K., Lynch, D.A., Obermeyer, A.C., and Matsuda, S.P.T. 2007. Arabidopsis camelliol C synthase evolved from enzymes that make pentacycles. Org Lett 9: 5223-5226.PubMedGoogle Scholar
  73. 73.
    Lodeiro, S., Xiong, Q., Wilson, W.K., Kolesnikova, M.D., Onak, C.S., and Matsuda, S.P.T. 2007. An oxidosqualene cyclase makes numerous products by diverse mechanisms: A challenge to prevailing concepts of triterpene biosynthesis. J Am Chem Soc 129: 11213-11222.PubMedGoogle Scholar
  74. 74.
    Xiang, T., Shibuya, M., Katsube, Y., Tsutsumi, T., Otsuka, M., Zhang, H., Masuda, K., and Ebizuka, Y. 2006. A new triterpene synthase from Arabidopsis thaliana produces a tricyclic triterpene with two hydroxyl groups. Org Lett 8: 2835-2838.PubMedGoogle Scholar
  75. 75.
    Xiong, Q., Wilson, W.K., and Matsuda, S.P. 2006. An Arabidopsis oxidosqualene cyclase catalyzes iridal skeleton formation by Grob fragmentation. Angew Chem Int Ed Engl 45: 1285-1288.PubMedGoogle Scholar
  76. 76.
    Hou, B., Lim, E.K., Higgins, G.S., and Bowles, D.J. 2004. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana.J Biol Chem 279: 47822-47832.PubMedGoogle Scholar
  77. 77.
    Lim, E.K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J., and Bowles, D.J. 2002. The activity of Arabidopsisglycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277: 586-592.PubMedGoogle Scholar
  78. 78.
    Lim, E.K., Doucet, C.J., Hou, B., Jackson, R.G., Abrams, S.R., and Bowles, D.J. 2005. Resolution of (+)-abscisic acid using an Arabidopsisglycosyltransferase. Tetrahedron: Asymmetry 16: 143-147.Google Scholar
  79. 79.
    Weis, M., Lim, E.K., Bruce, N., and Bowles, D. 2006. Regioselective glucosylation of aromatic compounds: Screening of a recombinant glycosyltransferase library to identify biocatalysts. Angew Chemie Int Ed 45: 3534-3538.Google Scholar
  80. 80.
    Kruse, T., Ho, K., Yoo, H.D., Johnson, T., Hippely, M., Park, J.H., Flavell, R., and Bobzin, S. 2008. In plantabiocatalysis screen of P450s identifies 8-methoxypsoralen as a substrate for the CYP82C subfamily, yielding original chemical structures. Chem Biol 15: 149-156.PubMedGoogle Scholar
  81. 81.
    Schneider, K., Kienow, L., Schmelzer, E., Colby, T., Bartsch, M., Miersch, O., Wasternack, C., Kombrink, E., and Stuible, H.P. 2005. A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thalianahas the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J Biol Chem 280: 13962-13972.PubMedGoogle Scholar
  82. 82.
    Olry, A., Schneider-Belhaddad, F., Heintz, D., and Werck-Reichhart, D. 2007. A medium-throughput screening assay to determine catalytic activities of oxygen-consuming enzymes: a new tool for functional characterization of cytochrome P450 and other oxygenases. Plant J 51: 331-340.PubMedGoogle Scholar
  83. 83.
    Brockmann, R., Beyer, A., Heinisch, J., and Wilhelm, T. 2007. Posttranscriptional expression regulation: What determines translation rates? PLoS Comp Biol 3: e57.Google Scholar
  84. 84.
    Watson, B.S., Asirvatham, V.S., Wang, L., and Sumner, L.W. 2003. Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131: 1104-1123.PubMedGoogle Scholar
  85. 85.
    Jones, A.M., Thomas, V., Bennett, M.H., Mansfield, J., and Grant, M. 2006. Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142: 1603-1620.PubMedGoogle Scholar
  86. 86.
    Chen, S. and Harmon, A.C. 2006. Advances in plant proteomics. Proteomics 6: 5504-5516.PubMedGoogle Scholar
  87. 87.
    Rose, J.K., Bashir, S., Giovannoni, J.J., Jahn, M.M., and Saravanan, R.S. 2004. Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39: 715-733.PubMedGoogle Scholar
  88. 88.
    Thelen, J.J. and Peck, S.C. 2007. Quantitative proteomics in plants: choices in abundance. Plant Cell 19: 3339-3346.PubMedGoogle Scholar
  89. 89.
    King, J. 2002. Recollections and reflections of a plant physiologist. Trends Plant Sci 7: 278-280.PubMedGoogle Scholar
  90. 90.
    Fiehn, O. 2002. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol 48: 155-171.PubMedGoogle Scholar
  91. 91.
    Ryan, D. and Robards, K. 2006. Metabolomics: The greatest omics of them all? Anal Chem 78: 7954-7958.Google Scholar
  92. 92.
    Hall, R.D. 2006. Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169: 453-468.PubMedGoogle Scholar
  93. 93.
    Hagel, J.M. and Facchini, P. 2008. Plant metabolomics: analytical platforms and integration with functional genomics. Phytochem Rev 7: 479-497.Google Scholar
  94. 94.
    Eisenreich, W. and Bacher, A. 2007. Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochem 68: 2799-2815.Google Scholar
  95. 95.
    Abdel-Farid, I.B., Kim, H.K., Choi, Y.H., and Verpoorte, R. 2007. Metabolic characterization of Brassica rapa leaves by NMR spectroscopy. J Agric Food Chem 55: 7936-7943.PubMedGoogle Scholar
  96. 96.
    Liang, Y.S., Choi, Y.H., Kim, H.K., Linthorst, H.J., and Verpoorte, R. 2006. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochem 67: 2503-2511.Google Scholar
  97. 97.
    Widarto, H.T., van der Meijden, E., Lefeber, A.W., Erkelens, C., Kim, H.K., Choi, Y.H., and Verpoorte, R. 2006. Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. J Chem Ecol 32: 2417-2428.PubMedGoogle Scholar
  98. 98.
    Aharoni, A., Ricd., V, Verhoeven, H.A., Maliepaard, C.A., Kruppa, G., Bino, R., and Goodenowe, D.B. 2002. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics 6: 217-234.Google Scholar
  99. 99.
    Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., Suzuki, T., Suzuki, H., Okazaki, K., Kitayama, M., Kanaya, S., Aoki, K., and Shibata, D. 2008. Metabolite annotations based on the integration of mass spectral information. Plant J 54: 949-962.PubMedGoogle Scholar
  100. 100.
    Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D., Mendes, P., Dixon, R.A., and Sumner, L.W. 2005. Metabolic profiling of Medicagotruncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56: 323-336.PubMedGoogle Scholar
  101. 101.
    Higdon, J.V., Delage, B., Williams, D.E., and Dashwood, R.H. 2007. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55: 224-236.PubMedGoogle Scholar
  102. 102.
    Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., and Saito, K. 2004. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana.Proc Natl Acad Sci U S A 101: 10205-10210.PubMedGoogle Scholar
  103. 103.
    Hirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J., and Saito, K. 2005. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590-25595.PubMedGoogle Scholar
  104. 104.
    Gion, J.M., Lalanne, C., Le, P.G., Ferry-Dumazet, H., Paiva, J., Chaumeil, P., Frigerio, J.M., Brach, J., Barre, A., de, D.A., Claverol, S., Bonneu, M., Sommerer, N., Negroni, L., and Plomion, C. 2005. The proteome of maritime pine wood forming tissue. Proteomics 5: 3731-3751.PubMedGoogle Scholar
  105. 105.
    Fiorani Celedon, P.A., de Andrade A., Xavier Meireles, K.G., Gallo de Carvalho, M.C., Gomes Caldas, D.G., Moon, D.H., Carneiro, R.T., Franceschini, L.M., Oda, S., and Labate, C.A. 2007. Proteomic analysis of the cambial region in juvenile Eucalyptus grandis at three ages. Proteomics 7: 2258-2274.Google Scholar
  106. 106.
    Robinson, A.R., Ukrainetz, N.K., Kang, K.Y., and Mansfield, S.D. 2007. Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytol 174: 762-773.PubMedGoogle Scholar
  107. 107.
    Goossens, A., Hakkinen, S.T., Laakso, I., Seppanen-Laakso, T., Biondi, S., De, S., Lammertyn, F., Nuutila, A.M., Soderlund, H., Zabeau, M., Inze, D., and Oksman-Caldentey, K.M. 2003. A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100: 8595-8600.PubMedGoogle Scholar
  108. 108.
    Rischer, H., Oresic, M., Seppanen-Laakso, T., Katajamaa, M., Lammertyn, F., rdiles-Diaz, W., Van Montagu, M.C., Inze, D., Oksman-Caldentey, K.M., and Goossens, A. 2006. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103: 5614-5619.PubMedGoogle Scholar
  109. 109.
    Facchini, P.J., Hagel, J.M., Liscombe, D.K., Loukanina, N., MacLeod, B.P., Samanani, N., and Zulak, K.G. 2007. Opium poppy: blueprint for an alkaloid factory. Phytochem Rev 6: 97-124.Google Scholar
  110. 110.
    Decker, G., Wanner, G., Zenk, M.H., and Lottspeich, F. 2000. Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Electrophoresis 21: 3500-3516.PubMedGoogle Scholar
  111. 111.
    Ounaroon, A., Decker, G., Schmidt, J., Lottspeich, F., and Kutchan, T.M. 2003. (R, S)-Reticuline 7-O-methyltransferase and (R, S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum - cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36: 808-819.PubMedGoogle Scholar
  112. 112.
    Gang, D.R., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E., and Pichersky, E. 2001. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125: 539-555.PubMedGoogle Scholar
  113. 113.
    Xie, Z., Kapteyn, J., and Gang, D.R. 2008. A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J 54: 349-361.PubMedGoogle Scholar
  114. 114.
    Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D., and Fernie, A.R. 2006. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24: 447-454.PubMedGoogle Scholar
  115. 115.
    Schauer, N., Semel, Y., Balbo, I., Steinfath, M., Repsilber, D., Selbig, J., Pleban, T., Zamir, D., and Fernie, A.R. 2008. Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20: 509-523.PubMedGoogle Scholar
  116. 116.
    Sticklen, M.B. 2008. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9: 433-443.PubMedGoogle Scholar
  117. 117.
    Rubin, E.M. 2008. Genomics of cellulosic biofuels. Nature 454: 841-845.PubMedGoogle Scholar
  118. 118.
    Santoni, V., Molloy, M., and Rabilloud, T. 2000. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21: 1054-1070.Google Scholar
  119. 119.
    Schad, M., Lipton, M.S., Giavalisco, P., Smith, R.D., and Kehr, J. 2005. Evaluation of two-dimensional electrophoresis and liquid chromatography - tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 26: 2729-2738.PubMedGoogle Scholar
  120. 120.
    Schad, M., Mungur, R., Fiehn, O., and Kehr, J. 2005. Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana.Plant Methods 1: 2.PubMedGoogle Scholar
  121. 121.
    Cha, S., Zhang, H., Ilarslan, H.I., Wurtele, E.S., Brachova, L., Nikolau, B.J., and Yeung, E.S. 2008. Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J 55: 348-360.PubMedGoogle Scholar
  122. 122.
    Dunkley, T.P., Dupree, P., Watson, R.B., and Lilley, K.S. 2004. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana.Biochem Soc Trans 32: 520-523.PubMedGoogle Scholar
  123. 123.
    Dunkley, T.P., Hester, S., Shadforth, I.P., Runions, J., Weimar, T., Hanton, S.L., Griffin, J.L., Bessant, C., Brandizzi, F., Hawes, C., Watson, R.B., Dupree, P., and Lilley, K.S. 2006. Mapping the Arabidopsisorganelle proteome. Proc Natl Acad Sci USA 103: 6518-6523.PubMedGoogle Scholar
  124. 124.
    Jones, A.M., Bennett, M.H., Mansfield, J.W., and Grant, M. 2006. Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics 6: 4155-4165.PubMedGoogle Scholar
  125. 125.
    Liang,Y.S., Kim, H.K., Lefeber, A.W., Erkelens, C., Choi, Y.H., and Verpoorte, R. 2006. Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two-dimensional nuclear magnetic resonance spectroscopy. J Chromatogr A 1112: 148-155.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jürgen Ehlting
    • 1
    • 2
  • Björn Hamberger
    • 3
  • Jean-François Ginglinger
    • 1
  • Danièle Werck-Reichhart
    • 1
  1. 1.Department of Plant Metabolic ResponsesInstitute for Plant Molecular Biology (IBMP)StrasbourgFrance
  2. 2.Centre for Forest BiologyUniversity of VictoriaVictoriaCanada
  3. 3.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada

Personalised recommendations