Natural Products from Seaweeds



Marine biota, even though the oceans are covering two thirds of earth’s surface, remains an unexplored source of new and exciting chemical structures. Systematic investigations on marine organisms started only forty years ago, but the results have already proven the impact of the significantly diverse conditions and the distinct evolution on their biosynthetic pathways that frequently yield complex molecules with no counterparts in the terrestrial environment. Seaweeds are among the first marine organisms chemically analyzed, with more than 3,600 articles published describing 3,300 secondary metabolites from marine plants and algae, and they still remain an almost endless source of new bioactive compounds. In this chapter, some of the major classes of seaweed metabolites which find applications in the industrial sector, such as carotenoids, phyco­colloids, polyunsaturated fatty acids and sterols, isolated either from aquacultures or wild harvesting, are presented. The ecological roles of a number of metabolites, as well as their potential application on the prevention of biofouling are described. The bioactive metabolites that target the pharmaceutical market, along with the spectrum of biological activities, are classified according to the class of producing seaweeds. The current status and the potential of seaweed metabolites for industrial exploitation is briefly discussed.


Brown Alga Bioactive Metabolite Fouling Organism Antifouling Activity Atomaric Acid 


  1. 1.
    Farnsworth, N. R. et al (1985) Medicinal plants in therapy. Bull. World Health Organ. 63, 965–981PubMedGoogle Scholar
  2. 2.
    Cragg, G.M. and Newman, D.J. (2005) International collaboration in drug discovery and development from natural sources. Pure Appl. Chem. 77, 1923–1942CrossRefGoogle Scholar
  3. 3.
    de la Torre-Castro, M. and Ronnback, P. (2004) Links between humans and seagrasses: an example from tropical East Africa. Ocean Coast. Manage. 47, 361–387CrossRefGoogle Scholar
  4. 4.
    Pietra, F. (2002) Defining biodiversity. In Biodiversity and natural product diversity. (Pietra, F., eds.), p. 4, Pergamon, AmsterdamGoogle Scholar
  5. 5.
    Cragg, G.M. and Newman, D.J. (2005) Biodiversity: a continuing source of novel drug leads. Pure Appl. Chem. 77, 7–24CrossRefGoogle Scholar
  6. 6.
    Cardozo, K.H.M. et al (2007) Metabolites from algae with economical impact. Comp. Biochem. Physiol. C. 146, 60–78CrossRefGoogle Scholar
  7. 7.
    Puglisi, M.P. et al (2004) Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron.60, 7035–7039CrossRefGoogle Scholar
  8. 8.
    Barros, M.P. et al (2005) Rhythmicity and oxidative/nitrosative stress in algae. Biol. Rhythm. Res. 36, 67–82CrossRefGoogle Scholar
  9. 9.
    Tringali, C. (1997) Bioactive metabolites from marine algae: recent results. Curr. Org. Chem. 1, 375–394Google Scholar
  10. 10.
    Burja, A.M. et al (2001) Marine cyanobacteria-a profilic source of natural products. Tetrahedron. 57, 9347–9377CrossRefGoogle Scholar
  11. 11.
    Mayer, A.M.S. and Hamann, M.T. (2005) Marine pharmacology in 2001-2002 marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp. Biochem. Physiol C. 140, 265–286Google Scholar
  12. 12.
    Mayer, A.M.S. et al (2007) Marine pharmacology in 2003-4: marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C. 145, 553–581Google Scholar
  13. 13.
    Singh, S. et al (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol. 25, 73–95PubMedCrossRefGoogle Scholar
  14. 14.
    Blunt, J.W. et al (2007) Marine natural products. Nat. Prod. Rep. 24, 31–86 and earlier reviews in this seriesPubMedCrossRefGoogle Scholar
  15. 15.
    Vadas, R.L. (1979) Seaweeds: an overview; ecological and economic importance. Experientia. 35, 429–433CrossRefGoogle Scholar
  16. 16.
    Rasmussen, R.S. and Morrissey, M.T. (2007) Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res. 52, 237–292PubMedCrossRefGoogle Scholar
  17. 17.
    Li, H.B. and Chen, F. (2001) Preparative isolation and purification of astaxanthin from the green microalga Chlorococcum sp. by high-speed counter-current chromatography. In Algae and Their Biotechnological Potential (Chen, F. and Jiang, Y., eds.), pp. 127–134, Kluwer, Dordrecht/Boston, MA/LondonGoogle Scholar
  18. 18.
    Dawson, E.Y. (1966) Marine Botany: An Introduction, 371 p., Holt, Rinehart/WinstonGoogle Scholar
  19. 19.
    Bold, H.C. (1967) Morphology of Plants, 2nd edn, 541 p., Harper & Row, LondonGoogle Scholar
  20. 20.
    Borowitzka, M.A. (1993) Products from microalgae. INFOFISH Int. 93, 21–26Google Scholar
  21. 21.
    Grobbelaar, J.U. (2004) Algal biotechnology: real opportunities for Africa. S. Afr. J. Bot. 70, 140–144Google Scholar
  22. 22.
    Kay, R.A. (1991) Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30, 555–573PubMedCrossRefGoogle Scholar
  23. 23.
    Yap, C.Y. and Chen, F. (2001) Polyunsaturated fatty acids: Biological significance, biosynthesis, and production by microalgae and microalgae-like organisms. In Algae and Their Biotechnological Potential (Chen, F. and Jiang, Y., eds.), pp. 1–32, Kluwer, DordrechtGoogle Scholar
  24. 24.
    Roussis, V. et al (2004) Cytotoxic metabolites from marine algae. In Plants That Fight Cancer (Kintzios, S.E. and Barberaki, M.G., eds.), pp. 195–241, CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  25. 25.
    Luiten, E.E. et al (2003) Realizing the promises of marine biotechnology. Biomol. Eng. 20, 429–439PubMedCrossRefGoogle Scholar
  26. 26.
    Tseng, C.K. (2001) Algal biotechnology industries and research activities in China. J. Appl. Phycol. 13, 375–380CrossRefGoogle Scholar
  27. 27.
    FAO (2004) The State of the World Fisheries and Aquaculture 2004 (SOFIA), FAO, Rome,
  28. 28.
    von Elbe, J.H. and Schwartz, S.J. (1996) Colorants. In Food Chemistry (Fennema, O.R., ed.), pp. 651–722, Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Gregory, J.F., III (1996) Vitamins. In Food Chemistry (Fennema, O.R., ed.), pp. 531–616, Marcel Dekker, New YorkGoogle Scholar
  30. 30.
    Ben-Amotz, A. (1993) Production of beta-carotene and vitamins by the halotolerant alga Dunaliella. In Marine Biotechnology, Volume 1: Pharmaceutical and Bioactive Natural Products (Attaway, D.H. and Zaborsky, O.R., eds), pp. 411–417, Plenum, New YorkGoogle Scholar
  31. 31.
    El Baz, F.K. et al (2002) Accumulation of antioxidant vitamins in Dunaliella salina. J. Biol. Sci. 2, 220–223CrossRefGoogle Scholar
  32. 32.
    Meyers, S.P. and Latscha, T. (1997) Carotenoids. In Crustacean Nutrition, Advances in World Aquaculture (D’Abramo, L.R. et al., eds.), vol. 6, pp. 164–193, World Aquaculture Society, Baton Rouge, LAGoogle Scholar
  33. 33.
    Miki, W. (1991) Biological functions and activities of animal carotenoids. Pure Appl. Chem. 63, 141–146CrossRefGoogle Scholar
  34. 34.
    Guerin, M. et al (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21, 210–216PubMedCrossRefGoogle Scholar
  35. 35.
    Potin, P. et al (1999) Oligosaccharide recognition signals and defence reactions inmarine plant-microbe interactions. Curr.Opin. Microbiol. 2, 276–283PubMedCrossRefGoogle Scholar
  36. 36.
    Mayer, A.M.S. and Gustafson, K.R. (2004) Marine pharmacology in 2001–2: antitumour and cytotoxic compounds. Eur. J. Cancer. 40, 2676–2704PubMedCrossRefGoogle Scholar
  37. 37.
    Mayer, A.M.S. and Gustafson, K.R. (2006) Marine pharmacology in 2003–2004: anti-tumour and cytotoxic compounds. Eur. J. Cancer. 42, 2241–2270PubMedCrossRefGoogle Scholar
  38. 38.
    Smit, A.J. (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol. 16, 245–262CrossRefGoogle Scholar
  39. 39.
    Ackman, R.G. et al (1964) Origin of marine fatty acids. Analysis of the fatty acids produced by the diatom Skeletonema costatum. J. Fish Res. Bd. Can. 21, 747–756CrossRefGoogle Scholar
  40. 40.
    Ohr, L.M. (2005) Riding the nutraceuticals wave. Food Technol. 59, 95–96Google Scholar
  41. 41.
    Gill, I. and Valivety, R. (1997) Polyunsaturated fatty acids: Part 1. Occurrence, biological activities and application. Trends Biotechnol. 15, 401–409PubMedCrossRefGoogle Scholar
  42. 42.
    Sayanova, O.V. and Napier, J.A. (2004) Eicosapentaenoic acid: biosynthetic routs and the potential for synthesis in transgenic plants. Phytochemistry. 65, 147–158PubMedCrossRefGoogle Scholar
  43. 43.
    Funk, C.D. (2001) Prostaglandins and leukotrienes: advances in eicosanoids biology. Science. 294, 1871–1875PubMedCrossRefGoogle Scholar
  44. 44.
    Bajpai, P. and Bajpai, P.K. (1993) Eicosapentaenoic acid (EPA) production from microorganisms: a review. J. Biotechnol. 30, 161–183PubMedCrossRefGoogle Scholar
  45. 45.
    Sijtsma, L. and de Swaaf, M.E. (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 64, 146–153PubMedCrossRefGoogle Scholar
  46. 46.
    Ponomarenko, L.P. et al (2004) Sterols of marine microalgae Pyramimonas cf. cordata (prasinophyta), Atteya ussurensis sp. nov. (Bacollariophyta) and a spring diatom bloom form Lake Baikal. Comp. Biochem. Physiol. B. 138, 65–70PubMedCrossRefGoogle Scholar
  47. 47.
    Delaunay, F. et al (1993) The effect of monospecific algal diets on growth and fatty acid composition of Pectenmaximus (L.) larvae. J. Exp. Mar. Biol. Ecol. 173, 163–179CrossRefGoogle Scholar
  48. 48.
    Paul, V.J. et al (2006) Marine chemical ecology. Nat. Prod. Rep. 23, 153–180PubMedCrossRefGoogle Scholar
  49. 49.
    La Barre, S.L. et al (2004) Monitoring defensive responses in macroalgae-limitations and perspectives. Phytochem. Rev. 3, 371–379CrossRefGoogle Scholar
  50. 50.
    Fusetani, N. (2004) Biofouling and antifouling. Nat. Prod. Rep. 21, 94–104PubMedCrossRefGoogle Scholar
  51. 51.
    Barbosa, J.P. et al (2003) A dolabellane diterpene from the Brazilian brown alga Dictyota pfaffii. Biochem. Syst. Ecol. 31, 1451–1453CrossRefGoogle Scholar
  52. 52.
    Barbosa, J.P. et al (2004) A dolabellane diteprene from the brown alga Dictyota pfaffii as chemical defense against herbivores. Bot. Mar. 47, 147–151CrossRefGoogle Scholar
  53. 53.
    Soares, A.R. et al (2003) Variation on diterpene production by the Brazilian alga Stypopodium zonale (Dictyotales, Phaeophyta). Biochem. Syst. Ecol. 31, 1347–1350CrossRefGoogle Scholar
  54. 54.
    Pereira, R.C. et al (2004) Variation in chemical defenses against herbivory in southwestern Atlantic Stypopodium zonale (Phaeophyta). Bot. Mar. 47, 202–208CrossRefGoogle Scholar
  55. 55.
    Ankisetty, S. et al (2004) Chemical investigation of predator-deterred macrolagae from the Antarctic Peninsula. J. Nat. Prod. 67, 1295–1302PubMedCrossRefGoogle Scholar
  56. 56.
    Amsler, C.D. and Fairhead, V.A. (2005) Defensive and sensory chemical ecology of brown algae. Adv. Bot. Res. 43, 1–91CrossRefGoogle Scholar
  57. 57.
    Shibata, T. et al (2002) Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornotus. Eur. J. Phycol. 37, 493–500CrossRefGoogle Scholar
  58. 58.
    Wright, J.T. et al (2004) Chemical defense in a marine alga: heritability and the potential for selection by herbivores. Ecology. 85, 2946–2959CrossRefGoogle Scholar
  59. 59.
    Pereira, R.C. et al (2003) Ecological roles of natural products of the Brazilian red seaweed Laurencia obtusa. Braz. J. Biol. 63, 665–672PubMedCrossRefGoogle Scholar
  60. 60.
    Paul, V.J. et al (2001) Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In Marine Chemical Ecology (McClintock, J.B. and Baker, B.J., eds.), pp. 227–265, CRC Press, Boca Raton, FLGoogle Scholar
  61. 61.
    Gross, H. and König, G.M. (2006) Terepenoids from marine organisms: unique structures and their pharmacological potential. Phytochem. Rev. 5, 115–141CrossRefGoogle Scholar
  62. 62.
    Phillips, J.A. and Price, I.R. (2002) How different is Mediterranean Caulerpa taxifolia (Caulerpales: Chlorophyta) to other populations of the species. Mar. Ecol. Prog. Ser. 238, 61–71CrossRefGoogle Scholar
  63. 63.
    Bellan-Santini, D. et al (1996) The influence of the introduced tropical alga Caulerpa taxifolia, on the biodiversity of the Mediterranean marine biota. J. Mar. Biol. 76, 235–237CrossRefGoogle Scholar
  64. 64.
    Paul, V.J. and Fenical, W. (1986) Chemical defense in tropical green algae, order Caulerpales. Mar. Ecol. Prog. Ser. 34, 157–169CrossRefGoogle Scholar
  65. 65.
    Paul, V.J. and Fenical, W. (1987) Natural products chemistry and chemical defense in tropical marine algae of the phylum Chlorophyta. In Bioorganic Marine Chemistry (Scheuer, P.J., ed.), pp. 1–29, Springer, BerlinCrossRefGoogle Scholar
  66. 66.
    Brunelli, M. et al (2000) Neurotoxic effects of caulerpenyne. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 24, 939–954CrossRefGoogle Scholar
  67. 67.
    Mozzachiodi, R. et al (2001) Caulerpenyne, a toxin from the seaweed Caulerpa taxifolia, depresses after polarization in invertebrate neurons. Neuroscience. 107, 519–526PubMedCrossRefGoogle Scholar
  68. 68.
    Parent-Massin, D. et al (1996) Evaluation of the toxicological risk to humans of caulerpenyne using human hematopoietic progenitors, melanocytes, and keratinocytes in culture. J. Toxicol. Environ. Health. 47, 47–59PubMedCrossRefGoogle Scholar
  69. 69.
    Barbier, P. et al (2001) Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK–N–SH and modifies the microtubule network. Life Sci. 70, 415–429PubMedCrossRefGoogle Scholar
  70. 70.
    Thibaut, T. and Meinesz, A. (2000) Are the Mediterranean ascoglossan molluscs Oxynoe olivacea and Lobiger serradifalci suitable agents for a biological control against the invading alga Caulerpa taxifolia. C. R. Acad. Sci. (Ser. 3). 323, 477–488Google Scholar
  71. 71.
    Adolph, S. et al (2005) Wound closure in the invasive green alga Caulerpa taxifolia by enzymatic activation of a protein cross-linker. Angew. Chem. Int. Ed. 44, 2806–2808CrossRefGoogle Scholar
  72. 72.
    Jung, V. and Pohnert, G. (2001) Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron. 57, 7169–7172CrossRefGoogle Scholar
  73. 73.
    Metcalf, R.L. (1987) Plant volatiles as insect attractants. CRC Crit. Rev. Plant Sci. 5, 251–301CrossRefGoogle Scholar
  74. 74.
    Harborne, J.B. (1994) Introduction to Ecological Biochemistry, 318 p., Academic, LondonGoogle Scholar
  75. 75.
    Kaissling, K.E. and Priesner, E. (1970)Die Riechschwelle des Seidenspinners. Naturwissens-chaften. 57, 23–28CrossRefGoogle Scholar
  76. 76.
    Arimura, G. et al (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature. 406, 512–515PubMedCrossRefGoogle Scholar
  77. 77.
    Turlings, T.C.J. et al (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science. 240, 1251–1253CrossRefGoogle Scholar
  78. 78.
    Kessler, A. and Baldwin, I.T. (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science. 291, 2141–2144PubMedCrossRefGoogle Scholar
  79. 79.
    Fink, P. (2007) Ecological functions of volatile organic compounds in aquatic systems. Mar. Freshwater Behav. Physiol. 40, 155–168CrossRefGoogle Scholar
  80. 80.
    Boland, W. (1995) The chemistry of gamete attraction – chemical structures, biosynthesis, and (a)biotic degradation of algal pheromones. Proc. Natl. Acad. Sci. USA. 92, 37–43CrossRefGoogle Scholar
  81. 81.
    Pohnert, G. and Boland, W. (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat. Prod. Rep. 19, 108–122PubMedCrossRefGoogle Scholar
  82. 82.
    Müller, D.G. et al (1971) Sex attractant in a brown alga - chemical structure. Science. 171, 815PubMedCrossRefGoogle Scholar
  83. 83.
    Wendel, T. and Jüttner, F. (1996) Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms. Phytochemistry. 41, 1445–1449CrossRefGoogle Scholar
  84. 84.
    Hombeck, M. and Boland, W. (1998) Biosynthesis of the algal pheromone fucoserratene by the freshwater diatom Asterionella Formosa (Bacillariophyceae). Tetrahedron. 54, 11033–11042CrossRefGoogle Scholar
  85. 85.
    Fink, P. et al (2006) Volatile foraging kairomones in the littoral zone: attraction of an herbivorous freshwater gastropod to algal odors. J. Chem. Ecol. 32, 1867–1881PubMedCrossRefGoogle Scholar
  86. 86.
    Fink, P. et al (2006) Oxylipins from freshwater diatoms act as attractants for a benthic herbivore. Arch. Hydrobiol. 167, 561–574CrossRefGoogle Scholar
  87. 87.
    Steinke, M. et al (2002) Trophic interactions in the sea: an ecological role for climate relevant volatiles? J. Phycol. 38, 630–638CrossRefGoogle Scholar
  88. 88.
    Zeeck, E. et al (1991) Sex-pheromones in a marine polychaete - biologically-active compounds from female Platynereis dumerilii. J. Exp. Zool. 260, 93–98CrossRefGoogle Scholar
  89. 89.
    Wolfe, G.V. and Steinke, M. (1996) Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160CrossRefGoogle Scholar
  90. 90.
    Gabric, A. et al (2001) Modeling the biogeochemical cycle of dimethylsulfide in the upper ocean: a review. Chemosphere Glob. Change Sci. 3, 377–392CrossRefGoogle Scholar
  91. 91.
    Ellis, J. and Korth, W. (1993) Removal of geosmin and methylisoborneol from drinking water by adsorption on ultrastable Zeolite-Y. Water Res. 27, 535–539CrossRefGoogle Scholar
  92. 92.
    Bhadury, P. and Wright, P.C. (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta. 219, 561–578PubMedCrossRefGoogle Scholar
  93. 93.
    Costerton, J.W. et al (1995) Microbial biofilms. Ann. Rev. Microbiol. 49, 711–745CrossRefGoogle Scholar
  94. 94.
    Abarzua, S. and Jakubowski, S. (1995) Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar. Ecol. Prog. Ser. II. 123, 301–312CrossRefGoogle Scholar
  95. 95.
    Clare, A.S. (1996) Marine natural product antifoulants: status and potential. Biofouling. 9, 211–229CrossRefGoogle Scholar
  96. 96.
    Bellas, J. (2006) Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci. Total Environ. 367, 573–585PubMedCrossRefGoogle Scholar
  97. 97.
    Braithwaite, R.A. and Fletcher, R.L. (2005) The toxicity of Irgarol 1051 and Sea-Nine 211 to the non-target macroalga Fucus serratus with  the aid of an image capture and analysis system. J. Exp. Mar. Biol. Ecol. 322, 111–121CrossRefGoogle Scholar
  98. 98.
    Fernandez-Alba, A.R. et al (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal. Chim. Acta. 456, 303–312CrossRefGoogle Scholar
  99. 99.
    Kobayashi, N. and Okamura, H. (2002) Effects of new antifouling compounds on the development of sea urchin. Mar. Pollut. Bull. 44, 748–751PubMedCrossRefGoogle Scholar
  100. 100.
    Kwok, K.W.H. and Leung, K.M.H. (2005) Toxicity of antifouling biocides to the intertidal harpacticoid copepod Trigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Mar. Pollut. Bull. 51, 830–837PubMedCrossRefGoogle Scholar
  101. 101.
    Myers, J.H. et al (2006) Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine. Mar. Pollut. Bull. 52, 1048–1055PubMedCrossRefGoogle Scholar
  102. 102.
    Di Landa, G. et al (2006) Occurrence of antifouling paint booster biocides in selected harbors and marinas inside the Gulf of Napoli: a preliminary survey. Mar. Pollut. Bull. 52, 1541–1546PubMedCrossRefGoogle Scholar
  103. 103.
    Dahlström, M. et al (2000) Surface active adrenoreceptor compounds prevent the settlement of cyprid larvae of Balanus improvisus. Biofouling. 16, 191–198CrossRefGoogle Scholar
  104. 104.
    Kubanek, J. et al (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA. 100, 6916–6921PubMedCrossRefGoogle Scholar
  105. 105.
    Hellio, C. et al (2002) Screening of marine algal extracts for anti-settlement activities against microalgae and maroalgae. Biofouling. 18, 205–215CrossRefGoogle Scholar
  106. 106.
    Steinberg, P.D. and de Nys, R. (2002) Chemical mediation of colonization of seaweed surfaces. J. Phycol. 38, 621–629CrossRefGoogle Scholar
  107. 107.
    Hay, M.E. (1992) The role of seaweed chemical defenses in the evolution of feeding specialization and in the mediation of complex interactions. In Ecological Roles of Marine Natural Products(Paul, V.J., ed.), pp. 93–118, Cornell University Press, Ithaca, NY/LondonGoogle Scholar
  108. 108.
    de Nys, R. and Steinberg, P.D. (2002) Linking marine biology and biotechnology. Curr. Opin. Biotechnol. 13, 244–248PubMedCrossRefGoogle Scholar
  109. 109.
    Manefield, M. et al (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 148, 1119–1127PubMedGoogle Scholar
  110. 110.
    Hentzer, M. et al (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 148, 87–102PubMedGoogle Scholar
  111. 111.
    Steinberg, P.D. et al (2001) Chemical mediation of surface colonisation. In Marine Chemical Ecology (McClintock, J.B. and Baker, B.J., eds), pp. 355–387, CRC Press, Boca Raton, FLGoogle Scholar
  112. 112.
    Kjelleberg, S. et al (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol. 13, 85–93CrossRefGoogle Scholar
  113. 113.
    Kjelleberg, S. and Steinberg, P.D. (2001) Surface warfare in the sea. Microbiol. Today. 28, 134–135Google Scholar
  114. 114.
    Manefield, M. et al (1999) Inhibition of LuxR-based AHL regulation by halogenated furanones from Delisea pulchra. Microbiology. 145, 283–291PubMedCrossRefGoogle Scholar
  115. 115.
    Givskov, M. et al (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178, 6618–6622PubMedGoogle Scholar
  116. 116.
    Steinberg, P.D. et al (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling. 12, 227–244CrossRefGoogle Scholar
  117. 117.
    Maximilien, R. et al (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from red alga Delisea pulchra. Aquat. Microb. Ecol. 15, 233–246CrossRefGoogle Scholar
  118. 118.
    Ren, D. et al (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett. Appl. Microbiol. 34, 293–299PubMedCrossRefGoogle Scholar
  119. 119.
    de Nys, R. et al (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling. 8, 259–271CrossRefGoogle Scholar
  120. 120.
    Rasmussen, T.B. et al (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology. 12, 3237–3244Google Scholar
  121. 121.
    Ren, D. et al (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ. Microbiol. 3, 731–736PubMedCrossRefGoogle Scholar
  122. 122.
    McLachlan, J. and Craigie, J.S. (1966) Antialgal activity of some simple phenols. J. Phycol. 2, 133–135CrossRefGoogle Scholar
  123. 123.
    König, G.M. and Wright, A.D. (1997) Laurencia rigida: chemical investigations of its antifouling dichloromethane extract. J. Nat. Prod. 60, 967–970PubMedCrossRefGoogle Scholar
  124. 124.
    de Nys, R. et al (1996) The need for standardised broad scale bioassay testing: a case study using the red algae Laurencia rigida. Biofouling. 10, 213–224PubMedCrossRefGoogle Scholar
  125. 125.
    König, G.M. et al (1999) Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga. Phytochemistry. 52, 1047–1053PubMedCrossRefGoogle Scholar
  126. 126.
    König, G.M. et al (1999) Halogenated monoterpenes from Plocamium costatum and their biological activity. J. Nat. Prod. 62, 383–385PubMedCrossRefGoogle Scholar
  127. 127.
    Jennings, J.G. and Steinberg, P.D. (1997) Phlorotannins vs. others factors affecting epiphyte abundance on the kelp Ecklonia radiata. Ocealogia. 109, 461–473CrossRefGoogle Scholar
  128. 128.
    Schmitt, T.M. et al (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology. 76, 107–123CrossRefGoogle Scholar
  129. 129.
    Schmitt, T.M. et al (1998) Seaweed secondary metabolites as antifoulants: effects of Dictyota spp. diterpenes on survivorship, settlement, and development of marine invertebrate larvae. Chemoecology. 8, 125–131CrossRefGoogle Scholar
  130. 130.
    Taniguchi, K. et al (1989) Inhibitory effects of the settlement and metamorphosis of the abalone Haliotis discus hannai veligers by the methanol extracts from the brown alga Dilophus okamurai. Nippon Suisan Gakkaishi. 55, 1133–1137CrossRefGoogle Scholar
  131. 131.
    Maréchal, J. et al (2004) Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria bifurcate (Cystoseiraceae) against cyprids of Balanus amphitrite and the marine bacteria Cobetia marina and Pseudoalteromonas haloplanktis. J. Exp. Mar. Biol. Ecol. 313, 47–62CrossRefGoogle Scholar
  132. 132.
    Culioli, G. et al (2002) Seasonal variations in the chemical composition of Bifurcaria bifurcate (Cystoseiraceae). Biochem. Syst. Ecol. 30, 61–64CrossRefGoogle Scholar
  133. 133.
    Smyrniotopoulos, V. et al (2003) Acetylene sesquiterpenoid esters from the green alga Caulerpa prolifera. J. Nat. Prod. 66, 21–24PubMedCrossRefGoogle Scholar
  134. 134.
    Pietra, F. (1990) A Secret World – Natural Products of Marine Life, 288 p., Birkhauser Verlag AG, BaselGoogle Scholar
  135. 135.
    McConnell, O.J. et al (1994) The discovery of natural products with therapeutic potential. Biotechnology. 26, 109–174PubMedGoogle Scholar
  136. 136.
    Riguera, R. (1997) Isolating bioactive compounds from marine organisms. J. Mar. Biotechnol. 5, 187–193Google Scholar
  137. 137.
    Kerr, R.G. and Kerr, S.S. (1999) Marine natural products as therapeutic agents. Exp. Opin. Ther. Patents. 9, 1207–1222CrossRefGoogle Scholar
  138. 138.
    MarinLit database, Department of Chemistry, University of Canterbury,
  139. 139.
    Mori, K. and Koga, Y. (1992) Synthesis and absolute configuration of (-)-stypoldione. Bioorg. Med. Chem. Lett. 2, 391–394CrossRefGoogle Scholar
  140. 140.
    Depix, M.S. et al (1998) The compound 14-keto-stypodiol diacetate from the algae Stypopodium flabelliforme inhibits microtubules and cell proliferation in DU-145 human prostatic cells. Mol. Cell. Biochem. 187, 191–199PubMedCrossRefGoogle Scholar
  141. 141.
    Fadli, M. et al (1991) Novel meroterpenoids from Cystoseira mediterranea: use of the Crown-Gall bioassay as a primary screen for lipophilic antineoplastic agents. J. Nat. Prod. 54, 261–264PubMedCrossRefGoogle Scholar
  142. 142.
    Urones, J.G. et al (1992) Meroterpenes from Cystoceira usneoides. Phytochemistry. 31, 179–182CrossRefGoogle Scholar
  143. 143.
    Ishitsuka, M.O. et al (1990) Antitumor xenicane and norxenicane lactones from the brown algae Dictyotaceae. J. Org. Chem. 53, 5010–5013CrossRefGoogle Scholar
  144. 144.
    Durán, R. et al (1997) New diterpenoids from the alga Dictyota dichotoma. Tetrahedron. 53, 8675–8688CrossRefGoogle Scholar
  145. 145.
    Ishitsuka, M.O. et al (1990) Bicyclic diterpenes from two species of brown algae of the Dictyotaceae. Phytochemistry. 29, 2605–2610CrossRefGoogle Scholar
  146. 146.
    Pereira, H.S. et al (2004) Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antivir. Res. 64, 69–76PubMedGoogle Scholar
  147. 147.
    Bouaicha, N. et al (1993) Bioactive diterpenoids isolated from Dilophus ligulatus. Planta Med. 59, 256–258PubMedCrossRefGoogle Scholar
  148. 148.
    Bouaicha, N. et al (1993) Cytotoxic diterpenoids from the brown alga Dilophus ligulatus. J. Nat. Prod. 56, 1747–1752PubMedCrossRefGoogle Scholar
  149. 149.
    Hu, J. et al (2004) Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J. Pharm. Sci. 95, 248–255CrossRefGoogle Scholar
  150. 150.
    Vetvicka, V. and Yvin, J.C. (2004) Effects of marine beta-1,3 glucan on immune reactions. Int. Immunopharmacol. 4, 721–730PubMedCrossRefGoogle Scholar
  151. 151.
    Capon, R.J. et al (1998) Marine nematocides: tetrahydrofurans from a southern Australian brown algae, Notheia anomala. Tetrahedron. 54, 2227–2242CrossRefGoogle Scholar
  152. 152.
    Ktari, L. and Guyot, M. (1999) A cytotoxic oxysterol from the marine alga Padina pavonica (L.) Thivy. J. Appl. Phycol. 11, 511–513CrossRefGoogle Scholar
  153. 153.
    Hoshino, T. et al (1998) An antivirally active sulfated polysaccharide from Sargassum horneri (Turner) C. Agardh. Biol. Pharm. Bull. 21, 730–734PubMedCrossRefGoogle Scholar
  154. 154.
    Kamei, Y. and Tsang, C.K. (2003) Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells. Int. J. Dev. Neurosci. 21, 255–262PubMedCrossRefGoogle Scholar
  155. 155.
    Tsang, C.K. and Kamei, Y. (2004) Sargaquinoic acid supports the survival of neuronal PC12D cells in a nerve growth factor-independent manner. Eur. J. Pharmacol. 488, 11–18PubMedCrossRefGoogle Scholar
  156. 156.
    Numata, A. et al (1992) A cytotoxic principle of the brown alga Sargassum tortile and structures of chromenes. Phytochemistry. 31, 1209–1213CrossRefGoogle Scholar
  157. 157.
    Gerwick, W.H. et al (1980) Isolation and structure of spatol a potent inhibitor of cell replication from the brown seaweed Spatoglossum schmittii. J. Am. Chem. Soc. 102, 7991–7993CrossRefGoogle Scholar
  158. 158.
    Wessels, M. et al (1999) A new tyrosine kinase inhibitor from the marine brown alga Stypopodium zonale. J. Nat. Prod. 62, 927–930PubMedCrossRefGoogle Scholar
  159. 159.
    Nahas, R. et al (2007) Radical-scavenging activity of Aegean Sea marine algae. Food Chem. 102, 577–581CrossRefGoogle Scholar
  160. 160.
    Sheu, J.H. et al (1999) New cytotoxic oxygenated fucosterols from the brown alga Turbinaria conoides. J. Nat. Prod. 62, 224–227PubMedCrossRefGoogle Scholar
  161. 161.
    Asari, F. et al (1989) Turbinaric acid, a cytotoxic secosqualene carboxylic acid from the brown alga Turbinaria ornata. J. Nat. Prod. 52, 1167–1169PubMedCrossRefGoogle Scholar
  162. 162.
    Sheu, J.H. et al (1997) Cytotoxic sterols from the Formosan brown alga Turbinaria ornata. Planta Med. 63, 571–572PubMedCrossRefGoogle Scholar
  163. 163.
    Ishihara, K. et al (1998) Inhibition of icosanoid production in MC/9 mouse mast cells by n-3 polyunsaturated fatty acids isolated from edible marine algae. Biosci. Biotechnol. Biochem. 62, 1412–1415PubMedCrossRefGoogle Scholar
  164. 164.
    Pereira, M.S. et al (1999) Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J. Biol. Chem. 274, 7656–7667PubMedCrossRefGoogle Scholar
  165. 165.
    Thorlacius, H. et al (2000) The polysaccharide fucoidan inhibits microvascular thrombus formation independently from P- and L-selectin function in vivo. Eur. J. Clin. Invest. 30, 804–810PubMedCrossRefGoogle Scholar
  166. 166.
    Pec, M.K. et al (2003) Induction apoptosis in estrogen dependent and independent cancer cells by the marine terpenoid dehydrothyrsiferol. Biochem. Pharmacol. 65, 1451–1461PubMedCrossRefGoogle Scholar
  167. 167.
    Jaspars, M. (1998) Pharmacy of the deep – marine organisms as a source of anticancer agents. In Advances in Drug Discovery Techniques (Harvey, A., ed.), p. 77, Wiley, ChichesterGoogle Scholar
  168. 168.
    Harada, H. et al (2002) Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 22, 2587–2590PubMedGoogle Scholar
  169. 169.
    Farias, W.R.L. et al (2000) Structure and anticoagulant activity of sulfated galactans – isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J. Biol. Chem. 275, 29299–29307PubMedCrossRefGoogle Scholar
  170. 170.
    Melo, F.R. et al (2004) Antithrombin-mediated anticoagulant activity of sulfated polysaccharides: different mechanisms for heparin and sulfated galactans. J. Biol. Chem. 279, 20824–20835PubMedCrossRefGoogle Scholar
  171. 171.
    Tan, L.T. et al (2000) Cis,cis- and trans,trans-ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J. Org. Chem. 65, 419–425PubMedCrossRefGoogle Scholar
  172. 172.
    Davyt, D. et al (1998) A new indole derivative from the red alga Chondria atropurpurea. Isolation, structure determination, and anthelmintic activity. J. Nat. Prod. 61, 1560–1563PubMedCrossRefGoogle Scholar
  173. 173.
    Sheu, J.H. et al (1997) Study on cytotoxic oxygenated desmosterols isolated from the red alga Galaxaura marginata. J. Nat. Prod. 60, 900–903PubMedCrossRefGoogle Scholar
  174. 174.
    Ohta, K. et al (1998) Sulfoquino­vosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIVreverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem. Pharm. Bull. 46, 684–686PubMedCrossRefGoogle Scholar
  175. 175.
    Ktari, L. et al (2000) 16β-Hydroxy-5α-cholestane-3,6-dione, a novel cytotoxic oxysterol from the red alga Jania rubens. Bioorg. Med. Chem. Lett. 10, 2563–2565PubMedCrossRefGoogle Scholar
  176. 176.
    Suzuki, M. et al. (1995) Callicladol, a novel bromotriterpene polyether from a Vietnamese species of the red algal genus Laurencia. Chem. Lett. 1045-1046Google Scholar
  177. 177.
    Juagdan, E.D. et al (1997) Two new chamigranes from an Hawaiian red alga, Laurencia cartilaginea. Tetrahedron. 53, 521–528CrossRefGoogle Scholar
  178. 178.
    Mohammed, K.A. et al (2004) Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricate that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J. Nat. Prod. 67, 2002–2007PubMedCrossRefGoogle Scholar
  179. 179.
    Iliopoulou, D. et al (2002) C15 acetogenins from the red alga Laurencia obtusa. Phytochemistry. 59, 111–116PubMedCrossRefGoogle Scholar
  180. 180.
    Suzuki, M. et al (2001) Novel halogenated metabolites from the Malaysian Laurencia pannosa. J. Nat. Prod. 64, 597–602PubMedCrossRefGoogle Scholar
  181. 181.
    Pec, M.K. et al (2002) Dehydrothyrsiferol does not modulate multidrug resistance-associated protein 1 resistance: a functional screening system for MRP1 substrates. Int. J. Mol. Med. 10, 605–608PubMedGoogle Scholar
  182. 182.
    Francisco, M.E.Y. and Erickson, K.L. (2001) Ma’iliohydrin, a cytotoxic chamigrene dibromohydrin from a Philippine Laurencia species. J. Nat. Prod. 64, 790–791PubMedCrossRefGoogle Scholar
  183. 183.
    Vairappan, C.S. et al (2001) Antibacterial halogenated metabolites from the Malaysian Laurencia species. Phytochemistry. 58, 291–297PubMedCrossRefGoogle Scholar
  184. 184.
    Fuller, R.W. et al (1994) Isolation and structure/activity features of halomon – related antitumor monoterpenes from the red algae Portieria hornemanii. J. Med. Chem. 37, 4407–4411PubMedCrossRefGoogle Scholar
  185. 185.
    Egorin, M.J. et al (1996) Plasma pharmacokinetics, bioavailability, and tissue distribution in CD2F1 mice of halomon, an antitumor halogenated monoterpene isolated from the red algae Portieria hornemanii. Cancer Chemother. Pharmacol. 39, 51–60PubMedCrossRefGoogle Scholar
  186. 186.
    Egorin, M.J. et al (1997) In vitro metabolism by mouse and human liver preparations of halomon, an antitumor halogenated monoterpene. Cancer Chemother. Pharmacol. 41, 9–14PubMedCrossRefGoogle Scholar
  187. 187.
    Xu, N. et al (2003) Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry. 62, 1221–1224PubMedCrossRefGoogle Scholar
  188. 188.
    Horgen, F.D. et al (2000) New terpenoid sulfates from the red alga Tricleocarpa fragilis. J. Nat. Prod. 63, 210–216PubMedCrossRefGoogle Scholar
  189. 189.
    Hamann, M.T. and Scheuer, P.J. (1993) Kahalalide F: a bioactive depsipeptide from the sacoglossum mollusk Elysia rufescens and the green alga Bryopsis sp. J. Am. Chem. Soc. 115, 5825–5826CrossRefGoogle Scholar
  190. 190.
    Suárez, Y. et al (2003) Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol. Cancer Ther. 2, 863–872PubMedGoogle Scholar
  191. 191.
    Fischel, J.L. et al (1994) Mise en évidence d’effets antiproliférants de la caulerpényne (de Caulerpa taxifolia). Expérience sur cellules tumorales humaines en culture. Bull. Cancer. 81, 489Google Scholar
  192. 192.
    Fischel, J.L. et al (1995) Cell growth inhibitory effects of caulerpenyne, a sesquiterpenoid from the marine algae Caulerpa taxifolia. Anticancer Res. 15, 2155–2160PubMedGoogle Scholar
  193. 193.
    Bitou, N. et al (1999) Screening of lipase inhibitors from marine algae. Lipids. 34, 441–445PubMedCrossRefGoogle Scholar
  194. 194.
    Sheu, J.H. et al (1995) Oxygenated clerosterols isolated from the marine alga Codium arabieum. J. Nat. Prod. 58, 1521–1526CrossRefGoogle Scholar
  195. 195.
    Nika, K. et al (2003) Specific recognition of immune cytokines by sulphated polysaccharides from marine algae. Eur. J. Phycol. 38, 257–264CrossRefGoogle Scholar
  196. 196.
    Ali, M.S. et al (2002) Steroid and antibacterial steroidal glycosides from marine green alga Codium iyengarii Borgesen. Nat. Prod. Lett. 16, 407–413PubMedCrossRefGoogle Scholar
  197. 197.
    Matsubara, K. et al (2000) An anticoagulant proteoglycan from the marine green alga, Codium pungniformis. J. Appl. Phycol. 12, 9–14CrossRefGoogle Scholar
  198. 198.
    Takamatsu, S. et al (2003) Marine natural products as novel antioxidant prototypes. J. Nat. Prod. 66, 605–608PubMedCrossRefGoogle Scholar
  199. 199.
    Govindan, M. et al (1994) New cycloartanol sulfates from the alga Tydemania expeditionis: inhibitors of the protein tyrosine kinase pp60v-src. J. Nat. Prod. 57, 74–78PubMedCrossRefGoogle Scholar
  200. 200.
    Awad, N.E. (2000) Biologically active steroid from the green alga Ulva lactuca. Phytother. Res. 14, 641–643PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pharmacognosy and Chemistry of Natural ProductsSchool of Pharmacy, University of Athens, Panepistimiopolis ZografouAthensGreece

Personalised recommendations