Biological Activity of Allelochemicals

  • Franck E. Dayan
  • Stephen O. Duke


All plants produce compounds that are phytotoxic to another plant species at some concentration. In some cases, these compounds function, at least in part, in plant/plant interactions, where a phytotoxin donor plant adversely affects a target plant, resulting in an advantage for the donor plant. This review discusses how such an allelochemical role of a phytotoxin can be proven and provides examples of some of the more studied phytochemicals that have been implicated in allelopathy. These include artemisinin, cineoles, β-triketones, catechin, sorgoleone, juglone and related quinones, rice allelochemicals, benzoxazinoids, common phenolic acids, l-DOPA, and m-tyrosine. Mechanisms of avoiding autotoxicity in the donor species are also discussed.


Phenolic Acid Shikimic Acid Herbicidal Activity Allelopathic Potential Phytotoxic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rice, E.L. (1984) Allelopathy, 2nd Edition. Academic Press, Orlando, FLGoogle Scholar
  2. 2.
    Duke, S.O. et al (2006) Hormesis: Is it an important factor in herbicide use and allelopathy? Outlooks Pest. Manag. 17, 29–33Google Scholar
  3. 3.
    Belz, R.G. et al (2007) Dose/response relationships in allelopathy research. In Allelopathy: New concepts and methodology (Fuji, Y. and Hiradate, S. eds). Science Publishers, Enfield, NH, pp. 3–29Google Scholar
  4. 4.
    Bonanomi, G. et al (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol. 169, 571–578PubMedCrossRefGoogle Scholar
  5. 5.
    Tharayil, N. et al (2008) Bioavailability of allelochemicals as affected by companion compounds in soil matrices. J. Agric. Food Chem. 56, 3706–3713PubMedCrossRefGoogle Scholar
  6. 6.
    Müller, C.H. et al (1964) Volatile growth inhibitors produced by aromatic shrubs. Science 143, 471–473PubMedCrossRefGoogle Scholar
  7. 7.
    Bartholomew, B. (1970) Bare zone between California shrub and grassland communities: The role of animals. Science 170, 1210–1212PubMedCrossRefGoogle Scholar
  8. 8.
    Belz, R.G. (2007) Allelopathy in crop/weed interactions – an update. Pest Manag. Sci. 63, 308–326PubMedCrossRefGoogle Scholar
  9. 9.
    Blum, U. et al (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit. Rev. Plant Sci. 18, 673–693CrossRefGoogle Scholar
  10. 10.
    Blum, U. et al (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J. Chem. Ecol. 17, 1045–1068CrossRefGoogle Scholar
  11. 11.
    Devine, M.D. et al (1993) Physiology of herbicide action. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  12. 12.
    Cheng, H.H. (1995) Characterization of the mechanisms of allelopathy: Modeling and experimental approaches. Am. Chem. Soc. Symp. Ser. 582, 132–141Google Scholar
  13. 13.
    Einhellig, F.A. et al (1983) Synergistic effects of four cinnamic acid compounds on grain sorghum. J. Plant Growth Regul. 1, 251–258Google Scholar
  14. 14.
    Duke, S.O. et al (1983) Interaction of moisture stress and three phenolic compounds on lettuce seed germination. Ann. Bot. 52, 923–926Google Scholar
  15. 15.
    Inderjit et al (2002) Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol. Plant. 114, 422–428CrossRefGoogle Scholar
  16. 16.
    Duke, S.O. et al (2003) Herbicides: Glyphosate. In Encyclopedia of Agrochemicals (Plimmer, J.R., Gammon, D.W., Ragsdale, N.N. eds). Wiley, New York Google Scholar
  17. 17.
    Duke, S.O. and Oliva, A. (2004) Mode of action of phytotoxic terpenoids. In Allelopathy: Chemistry and mode of action of allelochemicals (Macías, F.A. et al. eds). CRC Press, Boca Raton, FL, pp. 201–216Google Scholar
  18. 18.
    Duke, S.O. and Dayan, F.E. (2006) Modes of action of phytotoxins from plants. In Allelopathy: A physiological process with ecological implications (Reigosa, M. et al., eds), Springer, Amsterdam, The Netherlands, pp. 511–536Google Scholar
  19. 19.
    Tellez, M.R. et al (2002) Terpenoid-based defense in plants and other organisms. In Lipid Biotechnology (Kuo, T.M. and Gardner, H.W. eds). Marcel Dekker, New York, pp. 319–355Google Scholar
  20. 20.
    Bagchi, G.D. et al (1997) Arteether: a potent plant growth inhibitor from Artemisia annua, Phytochemistry 45, 1131–1133CrossRefGoogle Scholar
  21. 21.
    Duke, S.O. et al (1987) Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci. 35, 499–505Google Scholar
  22. 22.
    Dayan, F.E. et al (1999) Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry 50, 607–614CrossRefGoogle Scholar
  23. 23.
    Lydon, J. et al (1997) Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Sci. 45, 807–811Google Scholar
  24. 24.
    Escudero, A. et al (2000) Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol. 148, 71–80CrossRefGoogle Scholar
  25. 25.
    Karban, R. (2007) Experimental clipping of sagebrush inhibits seed germination of neighbours. Ecol. Lett. 10, 791–797PubMedCrossRefGoogle Scholar
  26. 26.
    Barney, J.N. et al (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J. Chem. Ecol. 31, 247–265PubMedCrossRefGoogle Scholar
  27. 27.
    Duke, S.O. et al (1988) Terpenoids from the genus Artemisia as potential pesticides. Amer. Chem. Soc. Symp. Ser. 380, 318–334Google Scholar
  28. 28.
    Chen, P.K. and Leather, G.R. (1990) Plant growth regulatory activities of artemisinin and its related compounds. J. Chem. Ecol. 16, 1867–1876CrossRefGoogle Scholar
  29. 29.
    DiTomaso, J.M. and Duke, S.O. (1991) Is polyamine biosynthesis a possible site of action of cinmethylin and artemisinin? Pestic. Biochem. Physiol. 39, 158–167CrossRefGoogle Scholar
  30. 30.
    Bajsa, J. et al (2007) A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimicrobial compounds. Biol. Pharm. Bull. 30, 1740–1744PubMedCrossRefGoogle Scholar
  31. 31.
    Drew, M.G.B. et al (2006) Reactions of artemisinin and arteether with acid: Implications for stability and mode of action of antimalarial action. J. Med. Chem. 49, 6065–6073PubMedCrossRefGoogle Scholar
  32. 32.
    Posner, G.H. and O’Neill, P.M. (2004) Knowledge of the proposed mechanism of action and cytochrome P450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. Accounts Chem. Res. 37, 397–404CrossRefGoogle Scholar
  33. 33.
    Stocks, P.A. et al (2007) Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs. Angew. Chem. 46, 6278–6283CrossRefGoogle Scholar
  34. 34.
    Mishina, Y.V. et al (2007) Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrob. Agents Chemother. 51, 1852–1854PubMedCrossRefGoogle Scholar
  35. 35.
    Nagamune, K. et al (2007) Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukar. Cell 6, 2147–2156CrossRefGoogle Scholar
  36. 36.
    Müller, W.H. and Müller, C.H. (1964) Volatile growth inhibitors produced by Salvia species. Bull. Torrey Bot. Club 91, 327–330CrossRefGoogle Scholar
  37. 37.
    Halligan, J.P. (1975) Toxic terpenes from Artemisia californica. Ecology 56, 999–1003CrossRefGoogle Scholar
  38. 38.
    Vaughn, S.F. and Spencer, G.F. (1993) Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 41, 114–119Google Scholar
  39. 39.
    Romagni, J.G. et al (2000) Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26, 303–313CrossRefGoogle Scholar
  40. 40.
    Vaughn, S.F. and Spencer, G.F. (1996) Synthesis and herbicidal activity of modified monoterpenes structurally similar to cinmethylin. Weed Sci. 44, 7–11Google Scholar
  41. 41.
    Douglas, M.H. et al (2004) Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65, 1255–1264PubMedCrossRefGoogle Scholar
  42. 42.
    Hellyer, R.O. (1968) The occurrence of β-triketones in the steam-volatile oils of some myrtaceous Australian plants. Austral. J. Chem. 21, 2825–2828CrossRefGoogle Scholar
  43. 43.
    Lee, D.L. et al (1997) The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci. 45, 601–609Google Scholar
  44. 44.
    Dayan, F.E. et al (2007) p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochemistry 68, 2004–2014PubMedCrossRefGoogle Scholar
  45. 45.
    Neidig, M.L. et al (2005). Spectroscopic and computational studies of NTBC bound to the non-heme iron enzyme (4-hydroxyphenyl) pyruvate dioxygenase: active site contributions to drug inhibition. Biochem. Biophys. Res. Commun. 338, 206–214PubMedCrossRefGoogle Scholar
  46. 46.
    Bais, H.P. et al (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interaction. Science 301, 1377–1380PubMedCrossRefGoogle Scholar
  47. 47.
    Bais, H.P. et al (2005) Enantiomeric-dependent phytotoxic and anti-microbial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 128, 1173–1179CrossRefGoogle Scholar
  48. 48.
    Weir, T.L. et al (2003) Intraspecific and interspecific interactions mediated by a phytotoxin (–)-catechin, secreted by the roots of Centauria maculosa (spotted knapweed). J. Chem. Ecol. 29, 2397–2412PubMedCrossRefGoogle Scholar
  49. 49.
    Veluri, R. et al (2004) Phytotoxic and antimicrobial activities of catechin derivatives. J. Agric. Food Chem. 52, 1077–1082PubMedCrossRefGoogle Scholar
  50. 50.
    Perry, L.G. and Vivanco, J.M. (2005) Dual role for an allelochemical: (±)-catechin from Centauria maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93, 1126–1135CrossRefGoogle Scholar
  51. 51.
    Thelen, C.C. et al (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol. Lett. 8, 209–217CrossRefGoogle Scholar
  52. 52.
    Callaway, R.M. and Ridenour, W.M. (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436–443CrossRefGoogle Scholar
  53. 53.
    Blair, A.C. et al (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol. Lett. 8, 1039–1047CrossRefGoogle Scholar
  54. 54.
    Blair, A.C. et al (2006) A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in Centauria maculosa invasion process. J. Chem. Ecol. 32, 2327–2331PubMedCrossRefGoogle Scholar
  55. 55.
    Inderjit et al (2006) Can plant biochemistry contribute to understanding of invasion ecology. Trends Plant Sci. 11, 574–580PubMedCrossRefGoogle Scholar
  56. 56.
    Perry, L.G. et al (2007) Concentrations of the allelochemical (±)-catechin in Centaurea maculosa soils. J. Chem. Ecol. 33, 2337–2344PubMedCrossRefGoogle Scholar
  57. 57.
    Furubayashi, A. et al (2007) Role of catechol structure in the adsorption and transformation reactions of l-DOPA in soils. J. Chem. Ecol. 33, 239–250PubMedCrossRefGoogle Scholar
  58. 58.
    Broeckling, C.D. and Vivanco, J.M. (2008) A selective, sensitive, and rapid in-field assay for soil catechin, an allelochemical of Centauria maculosa. Soil Biol. Biochem. 40, 1189–1196CrossRefGoogle Scholar
  59. 59.
    Prithiviraj, B. et al (2007) Chemical facilitation and induced pathogen resistance mediated by root-secreted phytotoxin. New Phytol. 173, 852–860PubMedCrossRefGoogle Scholar
  60. 60.
    Duke, S.O. et al (2007) Interactions of synthetic herbicides with plant disease and microbial herbicides. In Novel biotechnologies for biocontrol agent enhancement and management (Vurro, M. and Gressel, J. eds)., Springer, Dordrecht, The Netherlands, pp. 277–296CrossRefGoogle Scholar
  61. 61.
    Weir, T.L. et al (2006) Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223, 785–795PubMedCrossRefGoogle Scholar
  62. 62.
    Almajano, M.P. et al (2007) Albumin causes a synergistic increase in the antioxidant activity of green tea catechins in oil-in-water emulsions. Food. Chem. 102, 1375–1382CrossRefGoogle Scholar
  63. 63.
    Qin, B. et al (2007) No evidence for root-mediated allelopathy in Centaurea solstitialis, a species in a commonly allelopathic genus. Biolog. Invasions 9, 897–907CrossRefGoogle Scholar
  64. 64.
    Romeo, J.T. (2000) Raising the beam: moving beyond phytotoxicity. J. Chem. Ecol. 26, 2011–2014CrossRefGoogle Scholar
  65. 65.
    D’Abrosca, B. et al (2006) Chemical constituents of the aquatic plant Schoenoplectus lacustris: Evaluation of phytotoxic effects on the green alga Selanastrum capricornutum. J. Chem. Ecol. 32, 81–96PubMedCrossRefGoogle Scholar
  66. 66.
    Breazeale, J.F. (1924) The injurious after-effects of sorghum. J. Am. Soc. Agron. 16, 689–700CrossRefGoogle Scholar
  67. 67.
    Weston, L.A. (1996) Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88, 860–866CrossRefGoogle Scholar
  68. 68.
    Czarnota, M.A. et al (2003) Anatomy of sorgoleone-secreting root hairs of Sorghum species. Internat. J. Plant. Sci. 164, 861–866CrossRefGoogle Scholar
  69. 69.
    Vasilakoglou, I. et al (2005) Allelopathic potential of bermudagrass and johnsongrass and their interference with cotton and corn. Agron. J. 97, 303–313Google Scholar
  70. 70.
    Netzly, D.H. and Butler, L.G. (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26, 775–778CrossRefGoogle Scholar
  71. 71.
    Gimsing, A.L. et al. (2009) Mineralization of the allelochemical sorgoleone in soil, Chemo­sphere, in pressGoogle Scholar
  72. 72.
    Einhellig, F.A. and Souza, I.F. (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18, 1–11CrossRefGoogle Scholar
  73. 73.
    Rimando, A.M. et al (1998) A new photosystem II electron transfer inhibitor from Sorghum bicolor. J. Nat. Prod. 61, 927–930PubMedCrossRefGoogle Scholar
  74. 74.
    de Almeida Barbosa, L.C. et al (2001) Preparation and phytotoxicity of sorgoleone analogues. Quim. Nova 24, 751–755CrossRefGoogle Scholar
  75. 75.
    Einhellig, F.A. et al (1993) Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol. 19, 369–375CrossRefGoogle Scholar
  76. 76.
    Gonzalez, V.M. et al (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem. 45, 1415–1421CrossRefGoogle Scholar
  77. 77.
    Rasmussen, J.A. et al (1992) Sorgoleone from root exudate inhibits mitochondrial functions. J. Chem. Ecol. 18, 197–207CrossRefGoogle Scholar
  78. 78.
    Meazza, G. et al (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 59, 281–288CrossRefGoogle Scholar
  79. 79.
    Hejl, A.M. and Koster, K.L. (2004) The allelochemical sorgoleone inhibits root H++--ATPase and water uptake. J. Chem. Ecol. 30, 2181–2191CrossRefGoogle Scholar
  80. 80.
    Czarnota, M.A. et al (2003) Evaluation of seven sorghum (Sorghum sp.) accessions. J. Chem. Ecol. 29, 2073–2083PubMedCrossRefGoogle Scholar
  81. 81.
    Dayan, F.E. (2006) Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224, 339–346.PubMedCrossRefGoogle Scholar
  82. 82.
    Yang, X. et al (2004) Manipulation of root hair development and sorgoleone production in sorghum seedlings. J. Chem. Ecol. 30, 199–213PubMedCrossRefGoogle Scholar
  83. 83.
    Fate, G.D. and Lynn, D.G. (1996) Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J. Am. Chem. Soc. 118, 11369–11376CrossRefGoogle Scholar
  84. 84.
    Kagan, I.A. et al (2003) Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J. Agric. Food Chem. 51, 7589–7595PubMedCrossRefGoogle Scholar
  85. 85.
    Dayan, F.E. et al (2003) Podophyllum peltatum possesses a β-glucosidase with high substrate specificity for the aryltetralin lignan podophyllotoxin. Biochem. Biophys. Act. 1646, 157–163Google Scholar
  86. 86.
    Dayan, F.E. et al (2007) Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs. J. Exp. Bot. 58, 3263–3272PubMedCrossRefGoogle Scholar
  87. 87.
    Baerson, S.R. et al (2006) A functional genomics approach for the identification of genes involved in the biosynthesis of the allelochemical sorgoleone. Amer. Chem. Symp. Ser. 927, 265–276CrossRefGoogle Scholar
  88. 88.
    Baerson, S.B. et al (2008) A functional genomics investigation of allelochemical bioysynthesis in Sorghum bicolor root hairs. J. Biol. Chem. 83, 3231–3247Google Scholar
  89. 89.
    Cook, D. et al (2007) Molecular and biochemical characterization of a novel polyketide synthase likely to be involved in the biosynthesis of sorgoleone. Am. Chem. Soc. Symp. Ser. 955, 141–151Google Scholar
  90. 90.
    Pan, Z. et al (2007) Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Δ9,12,15 fatty acid isolated from Sorghum bicolor root hairs. J. Biol. Chem. 282, 4326–4335PubMedCrossRefGoogle Scholar
  91. 91.
    Topal, S. et al (2007) Herbicidal effects of juglone as an allelochemical. Phyton 46, 259–269Google Scholar
  92. 92.
    Reynolds, T. (1987) Comparative effects of alicyclic compounds and quinones on inhibition of lettuce fruit germination. Ann. Bot. 60, 215–223Google Scholar
  93. 93.
    Meyer, J.J.M. et al (2007) Identification of plumbagin epoxide as a germination inhibitory compound through a rapid bioassay on TLC. South Afric. J. Bot. 73, 654–656CrossRefGoogle Scholar
  94. 94.
    Jose, S. and Gillespie, A.R. (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the midwestern USA. Plant Soil 203, 191–197CrossRefGoogle Scholar
  95. 95.
    Jose, S. and Gillespie, A.R. (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology. Plant Soil 203, 199–205CrossRefGoogle Scholar
  96. 96.
    Hejl, A.M. et al (1993) Effects of juglone on growth, photosynthesis, and respiration. J. Chem. Ecol. 19, 559–568CrossRefGoogle Scholar
  97. 97.
    Koeppe, D.E. (1972) Reactions of isolated corn mitochondria influenced by juglone. Physiol. Plant. 27, 89–94Google Scholar
  98. 98.
    Bohm, P.A.F. et al (2006) Peroxidase activity and lignification in soybean root growth-inhibition by juglone. Biol. Plant 50, 315–317CrossRefGoogle Scholar
  99. 99.
    Hejl, A.M. and Koster, K.L. (2004) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol. 30, 453–471PubMedCrossRefGoogle Scholar
  100. 100.
    Dansette, P. and Azerad, R. (1970) New intermediate in naphthoquinone and menaquinone biosynthesis. Biochem. Biophysic. Res. Comm. 40, 1090–1095CrossRefGoogle Scholar
  101. 101.
    Müller, W.U. and Leistner, E. (1976) Naphthoquinone, an intermediate in juglone (5-hydroxy-1,4-naphthoquinone) biosynthesis. Phytochemistry 15, 407–410CrossRefGoogle Scholar
  102. 102.
    Jose, S. (2002) Black walnut allelopathy: current state of the science. In Chemical Ecology of Plants: Allelopathy in aquatic and terrestrial ecosystems (Inderjit and Mallik, A.U. eds). Birkhauser- Verlag AG, Basel, Swizerland, pp. 149–172CrossRefGoogle Scholar
  103. 103.
    von Kiparski, G.R. et al (2007) Occurrence and fate of the phytotoxin juglone in alley soils under black walnut trees. J. Environ. Qual. 36, 709–717PubMedCrossRefGoogle Scholar
  104. 104.
    Weidenhamer, J.D. and Romeo, J.T. (2004) Allelochemicals of Polygonella myriophylla: Chemistry and soil degradation. J. Chem. Ecol. 30, 1067–1082PubMedCrossRefGoogle Scholar
  105. 105.
    Olofsdotter, M. et al (2002) Improving crop competitive ability using allelopathy – an example from rice. Plant Breed. 121, 1–9CrossRefGoogle Scholar
  106. 106.
    Dilday, R.H. et al (2001) Allelopathic potential in rice germplasm against ducksalad, redstem and barnyardgrass. J. Crop Prod. 4, 287–301CrossRefGoogle Scholar
  107. 107.
    Kong, C. et al (2002) Using specific secondary metabolites as markers to evaluate allelopathic potentials of rice varieties and individual plants. Chin. Sci. Bull. 47, 839–843CrossRefGoogle Scholar
  108. 108.
    Jensen, L.B. et al (2001) Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron. J. 93, 21–26CrossRefGoogle Scholar
  109. 109.
    Kong, C. et al (2004) Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65, 1123–1128PubMedCrossRefGoogle Scholar
  110. 110.
    Gealy, D.R. et al (2003) Rice cultivar differences in suppression of barnyardgrass (Echinochloa crus-galli) and economics of reduced propanil rates. Weed Sci. 51, 601–609CrossRefGoogle Scholar
  111. 111.
    Courtois, B. and Olofsdotter, M. (1998) Incorporating the allelopathy trait in upland rice breeding programs. In Proceedings of the Workshop on Allelopathy in Rice (Olofsdotter, M., ed). Manila, Philippines, pp. 57–68Google Scholar
  112. 112.
    Olofsdotter, M. (2001) Getting closer to breeding for competitive ability and the role of allelopathy – An example from rice (Oriza sativa). Weed Technol. 15, 798–806CrossRefGoogle Scholar
  113. 113.
    Kato-Noguchi, H. and Ino, I. (2004) Release level of momilactone B from rice plants. Plant Product. Sci. 7, 189–90CrossRefGoogle Scholar
  114. 114.
    Bouillant, M.L. et al (1994) Identification of 5-(12-heptadecenyl)-resorcinol in rice root exudates. Phytochemistry 35, 769–771CrossRefGoogle Scholar
  115. 115.
    VanEtten, H.D. et al (1994) Two classes of plant antibiotics: phytoalexins versus ‘phytoanticipins’. Plant Cell 6, 1191–1192PubMedCrossRefGoogle Scholar
  116. 116.
    Kozubek, A. and Tyman, J.H.P. (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99, 1–25PubMedCrossRefGoogle Scholar
  117. 117.
    Kong, C. et al (2004) Release and activity of allelochemicals from allelopathic rice seedlings. J. Agric. Food Chem. 52, 2861–2865PubMedCrossRefGoogle Scholar
  118. 118.
    Sicker, D. et al (2004) Benzoxazolin-2(3H)-ones - Generation, effects and detoxification in the competition among plants. In Allelopathy: Chemistry and mode of action of allelochemicals (Macías, F.A. et al, eds). CRC Press, Boca Raton, FL, pp. 77–102Google Scholar
  119. 119.
    Fomsgaard, I.S. (2006) Chemical ecology in wheat plant-pest interactions. How the use of modern techniques and a multidisciplinary approach can throw new light on a well-known phenomenon: Allelopathy. J. Agric. Food Chem. 54, 987–990PubMedCrossRefGoogle Scholar
  120. 120.
    Macías, F.A. et al (2007) Allellopathy – a natural alternative for weed control. Pest Manag. Sci. 63, 327–348PubMedCrossRefGoogle Scholar
  121. 121.
    Schulz, M. et al (1994) Allelopathic effects of living quackgrass (Agropyron repens L.). Identification of inhibitory allelochemicals exuded fro rhizome borne roots. Angew. Bot. 68, 195–200Google Scholar
  122. 122.
    Chiapusio, G. et al (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 23, 2445–2453CrossRefGoogle Scholar
  123. 123.
    Barnes, J.P. and Putnam, A.R. (1986) Allelopathic activity of rye (Secale cereale L.). In The science of allelopathy (Putnam, A.R. and Tang, C.-S. eds). Wiley-Interscience, New York, pp. 271–286Google Scholar
  124. 124.
    Belz, R.G. and Hurle, K. (2005) Differential exudation of two benzoxazinoids: some of the determining factors for seedling allelopathy of Triticeae species. J. Agric. Food Chem. 53, 250–261PubMedCrossRefGoogle Scholar
  125. 125.
    Huang, Z. et al (2003) Correlation between phytotoxicity on annual grasses (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat. J. Chem. Ecol. 29, 2263–2279PubMedCrossRefGoogle Scholar
  126. 126.
    Macías, F.A. et al (2006) Structure-activity relationship (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on target species (STS). J. Agric. Food Chem. 53, 538–548CrossRefGoogle Scholar
  127. 127.
    Sánchez-Moreiras, A.M. et al (2004) Mode of action of the hydoxamic acid BOA and other related compounds. In Allelopathy: Chemistry and mode of action of allelochemicals (Macías, F.A. et al eds). CRC Press, Boca Raton, FL, pp. 239–252Google Scholar
  128. 128.
    Niemeyer, H.M. et al (1987) Inhibition of energy metabolism by benzoxazolin-2-one. Comp. Biochem. Physiol. 87B, 35–39Google Scholar
  129. 129.
    Freibe, A. et al (1997) Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytoc­hemistry 44, 979–983CrossRefGoogle Scholar
  130. 130.
    Reigosa, M.J. et al (2001) Comparison of physiological effects of allelochemicals and commercial herbicides. Allelopathy J. 8, 211–220Google Scholar
  131. 131.
    Rojas, M.C. et al (1997) Stimulatory effect of DIMBOA on NADH oxidation catalyzed by horseradish peroxidase. Phytochemistry 46, 11–15CrossRefGoogle Scholar
  132. 132.
    Kato-Noguchi, H. and Macías, F.A. (2005) Effect of 6-methoxy-2-benzoxazolinone on the germination and α-amylase activity in lettuce seeds. J. Plant Physiol. 162, 1304–1307PubMedCrossRefGoogle Scholar
  133. 133.
    Baerson, S.R. et al (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one (BOA). J. Biol. Chem. 280, 21867–21881PubMedCrossRefGoogle Scholar
  134. 134.
    Wieland, I. et al (1999) Detoxification of benzoxazolin-2(3H)-one in higher plants. In Recent advances in allelopathy Vol. 1 (Macías, F.A. et al eds). Servicio e Publicaciones-Univ. Cádiz, Spain, pp. 47–56Google Scholar
  135. 135.
    Rimando, A.M. and Duke, S.O. (2003) Rice allelopathy. In Rice production: Origin, history, and technology (Smith, C.S. and Dilday, R.H. eds). Wiley, New York, pp. 221–244Google Scholar
  136. 136.
    Olofsdotter, M. et al (2002) Why phenolic acids are unlikely primary allelochemicals in rice. J. Chem. Ecol. 28, 229–242PubMedCrossRefGoogle Scholar
  137. 137.
    Blum, U. (1996) Allelopathic interactions involving phenolic acids. J. Nematol. 28, 259–267PubMedGoogle Scholar
  138. 138.
    Einhellig, F.A. and Rasmussen, J.A. (1978) Synergistic inhibitory effects of vanillic and p-hydroxybenzoic acids on radish and grain sorghum. J. Chem. Ecol. 4, 425–436CrossRefGoogle Scholar
  139. 139.
    Rasmussen, J.A. and Einhellig, F.A. (1977) Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J. Chem. Ecol. 3, 197–205CrossRefGoogle Scholar
  140. 140.
    Rasmussen, J.A. and Einhellig, F.A. (1979) Inhibitory effects of combinations of three phenolic acids on grain sorghum germination. Plant Sci. Lett. 14, 69–74CrossRefGoogle Scholar
  141. 141.
    Blum, U. et al (1984) Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J. Chem. Ecol. 10, 1169–1191CrossRefGoogle Scholar
  142. 142.
    Blum, U. et al (1985) Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J. Chem. Ecol. 11, 619–641CrossRefGoogle Scholar
  143. 143.
    Blum, U. et al (1985) Effects of ferulic and p-coumaric acids in nutrient culture on cucumber leaf expansion as influenced by pH. J. Chem. Ecol. 11, 1567–1582CrossRefGoogle Scholar
  144. 144.
    Blum, U. et al (1989) Effects of mixtures of phenolic acids on leaf area expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J. Chem. Ecol. 15, 2413–2423CrossRefGoogle Scholar
  145. 145.
    Gerig, T.M. and Blum, U. (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber grown in Portsmouth B1 soil materials. J. Chem. Ecol. 17, 29–40CrossRefGoogle Scholar
  146. 146.
    Gerig, T.M. et al (1989) Statistical analysis of the joint inhibitory action of similar compounds. J. Chem. Ecol. 15, 2403–2412CrossRefGoogle Scholar
  147. 147.
    Jia, C. et al (2006) Joint action of benzoxazinone derivatives and phenolic acids. J. Agric. Food Chem. 54, 1049–1057PubMedCrossRefGoogle Scholar
  148. 148.
    Lyu, S.W. et al (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J. Chem. Ecol. 16, 2559–2567CrossRefGoogle Scholar
  149. 149.
    Shann, J.R. and Blum, U. (1987) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26, 2959–2964CrossRefGoogle Scholar
  150. 150.
    Blum, U. et al (2000) Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26, 2059–2078CrossRefGoogle Scholar
  151. 151.
    Tharayil, N. et al (2006) Preferential sorption of phenolic phytotoxins to soil: implications for altering the availability of allelochemicals. J. Agric. Food Chem. 54, 3033–3040PubMedCrossRefGoogle Scholar
  152. 152.
    Lehman, M.E. and Blum, U. (1999) Influence of pretreatment stresses on inhibitory effects of ferulic acid, an allelopathic phenolic acid. J. Chem. Ecol. 25, 1517–1529CrossRefGoogle Scholar
  153. 153.
    Booker, F.L. et al (1993) Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J. Exp. Bot. 43, 649–55CrossRefGoogle Scholar
  154. 154.
    Lehman, M.E. and Blum, U. (1999) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentration. J. Chem. Ecol. 25, 2585–2600CrossRefGoogle Scholar
  155. 155.
    Blum, U. and Gerig, T.M. (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: Nutrient culture studies. J. Chem. Ecol. 31, 1907–1932PubMedCrossRefGoogle Scholar
  156. 156.
    Fujii, Y. (1999) Allelopathy of velvetbean: Determination and identification of l-DOPA as a candidate of allelopathic substances. In Biologically Active Natural Products: Agrochemicals (Cutler, H.G. and Cutler, S.J. eds). CRC Press, Boca Raton, FL, pp. 33–47Google Scholar
  157. 157.
    Nishihara, E. et al (2005) l-3-(3,4-Dihydroxyphenyl)alanine (l-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Regul. 45, 113–120CrossRefGoogle Scholar
  158. 158.
    Nishihara, E. et al (2004) Germination growth response of different plant species to the allelochemical l-3,4-dihydroxyphenylalanine (l-DOPA). Plant Growth Regul. 42, 181–189CrossRefGoogle Scholar
  159. 159.
    Hachinohe, M. et al (2004) absorption, translocation and metabolism of l-DOPA in barnyardgrass and lettuce: Their involvement in species-selective phytotoxic action. Plant Growth Regul. 43, 237–243CrossRefGoogle Scholar
  160. 160.
    Hachinohe, M. and Matsumoto, H. (2005) Involvement of reactive oxygen species generated from melanin synthesis pathway in phytotoxicity of l-DOPA. J. Chem. Ecol. 31, 237–246PubMedCrossRefGoogle Scholar
  161. 161.
    Hachinohe, M. and Matsumoto, H. (2007) Mechanism of selective phytotoxicity of l-3,4-dihydroxyphenylalanine (l-DOPA) in barnyardgrass and lettuce. J. Chem. Ecol. 33, 1919–1926PubMedCrossRefGoogle Scholar
  162. 162.
    Soares, A.R. et al (2007) l-DOPA increases lignification associated with Glycine max root growth-inhibition. J. Chem. Ecol. 33, 265–275PubMedCrossRefGoogle Scholar
  163. 163.
    Hiradate, S. et al (2005) Changes in chemical structure and biological activity of l-DOPA as influence by andosol and its components. Soil Sci. Plant Nut. (Japan) 51, 477–484CrossRefGoogle Scholar
  164. 164.
    Bertin, C. et al (2003) Laboratory assessment of the allelopathic effects of fine leaf fescues. J. Chem. Ecol. 29, 1919–1937PubMedCrossRefGoogle Scholar
  165. 165.
    Bertin, C. et al (2007) Grass roots chemistry: meta-tyrosine, an herbicidal nonprotein amino acid. Proc. Natl. Acad. Sci. USA 104, 16964–16969PubMedCrossRefGoogle Scholar
  166. 166.
    Schneider, D. et al (2002) Cycads: their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften 89, 281–294PubMedCrossRefGoogle Scholar
  167. 167.
    Lambein, F. et al (2001) Non-protein amino acids and food safety. Special Publication – Royal Soc. Chem. 269, 580–583Google Scholar
  168. 168.
    Xuan, T.D. et al (2006) Mimosine in Leucaena as a potent bio-herbicide. Agron. Sustain. Devel. 26, 89–97CrossRefGoogle Scholar
  169. 169.
    Schenk, S.U. and Werner, D. (1991) β-(3-Isoxazolin-5-on-2-yl)-alanine from Pisum: allelopathic properties and antimycotic bioassay. Phytochemistry 30, 467–470CrossRefGoogle Scholar
  170. 170.
    Fonné-Pfister, R. et al (1996) The mode of action and the structure of a herbicide in complex with its target: binding of activated hydantocidin to the feedback regulation site of adenylosuccinate synthetase. Proc. Natl. Acad. Sci. USA 93, 9431–9436PubMedCrossRefGoogle Scholar
  171. 171.
    Dayan, F.E. et al (2002) Bioactivation of the fungal phytotoxin 2,5-anhydro-d-glucitol by glycolytic enzymes is an essential component of its mechanism of action. Z. Naturforsch. 57c, 645–653Google Scholar
  172. 172.
    Ishimitsu, S. et al (1980) Formation of m-tyrosine and o-tyrosine from l-phenylalanine by rat brain homogenate. Chem. Pharm. Bull. (Tokyo) 28, 1653–1655PubMedCrossRefGoogle Scholar
  173. 173.
    Duke, S.O. (2003) Weeding with transgenes. Trends Biotechnol. 21, 182–195CrossRefGoogle Scholar
  174. 174.
    Duke, S.O. et al (1999) Tissue localization and potential uses of phytochemicals with biological activity. In Recent advances in allelopathy Vol. 1 (Macías, F.A. et al eds). Servicio e Publicaciones-Univ. Cádiz, Spain, pp. 211–218Google Scholar
  175. 175.
    Singh, H.P. et al (1999) Autotoxicity: concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 18, 757–772CrossRefGoogle Scholar
  176. 176.
    Duke, S.O. and Paul, R.N. (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int. J. Plant Sci. 154, 107–118CrossRefGoogle Scholar
  177. 177.
    Duke, M.V. et al (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua. Int. J. Plant Sci. 155, 365–373CrossRefGoogle Scholar
  178. 178.
    Tellez, M.R. et al (1999) Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L. Phytochemistry 52, 1035–1040CrossRefGoogle Scholar
  179. 179.
    Oliva, A. et al (2002) Aryltertralin lignans inhibit plant growth by affecting formation of mitotic microtubular organizing centers. Pestic. Biochem. Physiol. 72, 45–54CrossRefGoogle Scholar
  180. 180.
    Zavala, J.A. et al (2004) Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc. Natl. Acad. Sci. USA 101, 1607–1612PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Natural Products Utilization Research UnitAgricultural Research Service, United States Department of AgricultureUniversityUSA

Personalised recommendations