Biological Activity of Defence-Related Plant Secondary Metabolites

  • John P. Morrissey


Althought is accepted that secondary metabolites and natural products in plants are involved in diverse activities, the function of most of the thousands of phenolics, quinones, terpenes, flavonoids and other low molecular weight meta­bolites remains unknown. The best understood secondary metabolites are implicated in defence against pathogens, with the mode of action of some of these established. Interestingly, to date, a relatively small number of processes have been shown to be the targets of plant metabolites and these include electron transport chains, mitochondrial function and membrane integrity. It is now emerging, however, that other specific enzymes and processes may also be the targets of particular metabolites. There is a general hope that modern genomic approaches will identify new targets and modes of action of plant metabolites. Molecules, especially triterpenoids, that trigger apoptosis or autophagy in tumour cells are of particular interest in this regard. When considering the approaches taken in plant science hitherto, and the strategies that have yielded success in the biomedical ­sector, we discuss whether there is a case to be made for carrying out initial studies on mode of action in a genetically tractable system like the yeast Saccharomyces cerevisiae, before moving to specific studies in plant or human cells.


Sesquiterpene Lactone Plant Secondary Metabolite Plant Metabolite Plant Defensin Cyanogenic Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aerts, A.M., Francois, I.E., Meert, E.M., Li, Q.T., Cammue, B.P., and Thevissen, K. (2007) The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13:243–247.PubMedCrossRefGoogle Scholar
  2. Akiyama, K., and Hayashi, H. (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot (Lond) 97:925–931.CrossRefGoogle Scholar
  3. Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827.PubMedCrossRefGoogle Scholar
  4. Armah, C.N., Mackie, A.R., Roy, C., Price, K., Osbourn, A.E., Bowyer, P., and Ladha, S. (1999) The membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 76:281–290.PubMedCrossRefGoogle Scholar
  5. Baerson, S.R., Sanchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Kagan, I.A., Agarwal, A.K., et al. (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J Biol Chem 280:21867–21881.PubMedCrossRefGoogle Scholar
  6. Bais, H.P., Walker, T.S., Stermitz, F.R., Hufbauer, R.A., and Vivanco, J.M. (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (+/-)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–1179.PubMedCrossRefGoogle Scholar
  7. Bais, H.P., Walker, T.S., Kennan, A.J., Stermitz, F.R., and Vivanco, J.M. (2003a) Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots. J Agric Food Chem 51:897–901.CrossRefGoogle Scholar
  8. Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M., and Vivanco, J.M. (2003b) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380.CrossRefGoogle Scholar
  9. Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266.PubMedCrossRefGoogle Scholar
  10. Baker, D.D., Chu, M., Oza, U., and Rajgarhia, V. (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep 24:1225–1244.PubMedCrossRefGoogle Scholar
  11. Balunas, M.J., and Kinghorn, A.D. (2005) Drug discovery from medicinal plants. Life Sci 78:431–441.PubMedCrossRefGoogle Scholar
  12. Bouarab, K., Melton, R., Peart, J., Baulcombe, D., and Osbourn, A. (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892.PubMedCrossRefGoogle Scholar
  13. Buck, C.B. (2008) Defensins’ offensive play: exploiting a viral achilles’ heel. Cell Host Microbe 3:3–4.PubMedCrossRefGoogle Scholar
  14. Cabral, K.M., Almeida, M.S., Valente, A.P., Almeida, F.C., and Kurtenbach, E. (2003) Production of the active antifungal Pisum sativum defensin 1 (Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Protein Expr Purif 31:115–122.PubMedCrossRefGoogle Scholar
  15. Codogno, P., and Meijer, A.J. (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 Suppl 2:1509–1518.PubMedCrossRefGoogle Scholar
  16. Cole, D., Pallet, K., and Rodgers, M. (2000) Discovering new modes of action for herbicides and the impact of genomics. Pesticide Outlook 11:223–229.CrossRefGoogle Scholar
  17. D’Auria, J.C., and Gershenzon, J. (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316.PubMedCrossRefGoogle Scholar
  18. Eckstein-Ludwig, U., Webb, R.J., Van Goethem, I.D., East, J.M., Lee, A.G., Kimura, M., et al. (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961.PubMedCrossRefGoogle Scholar
  19. Ellington, A.A., Berhow, M.A., and Singletary, K.W. (2006) Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis 27:298–306.PubMedCrossRefGoogle Scholar
  20. Field, B., Jordan, F., and Osbourn, A. (2006) First encounters - deployment of defence-related natural products by plants. New Phytol 172:193–207.PubMedCrossRefGoogle Scholar
  21. Francois, I.E., Aerts, A.M., Cammue, B.P., and Thevissen, K. (2005) Currently used antimycotics: spectrum, mode of action and resistance occurrence. Curr Drug Targets 6:895–907.PubMedCrossRefGoogle Scholar
  22. Friedman, M. (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50:5751–5780.PubMedCrossRefGoogle Scholar
  23. Friedman, M. (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54:8655–8681.PubMedCrossRefGoogle Scholar
  24. Friedman, M. (2007) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 51:116–134.PubMedCrossRefGoogle Scholar
  25. Golenser, J., Waknine, J.H., Krugliak, M., Hunt, N.H., and Grau, G.E. (2006) Current perspectives on the mechanism of action of artemisinins. Int J Parasitol 36:1427–1441.PubMedCrossRefGoogle Scholar
  26. Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pages, V., Dun, E.A., Pillot, J.P., et al. (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194.PubMedCrossRefGoogle Scholar
  27. Gutterman, J.U., Lai, H.T., Yang, P., Haridas, V., Gaikwad, A., and Marcus, S. (2005) Effects of the tumor inhibitory triterpenoid avicin G on cell integrity, cytokinesis, and protein ubiquitination in fission yeast. Proc Natl Acad Sci U S A 102:12771–12776.PubMedCrossRefGoogle Scholar
  28. Hale, J.D., and Hancock, R.E. (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959.PubMedCrossRefGoogle Scholar
  29. Halkier, B.A., and Gershenzon, J. (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333.PubMedCrossRefGoogle Scholar
  30. Haridas, V., Li, X., Mizumachi, T., Higuchi, M., Lemeshko, V.V., Colombini, M., and Gutterman, J.U. (2007) Avicins, a novel plant-derived metabolite lowers energy metabolism in tumor cells by targeting the outer mitochondrial membrane. Mitochondrion 7:234–240.PubMedCrossRefGoogle Scholar
  31. Haridas, V., Higuchi, M., Jayatilake, G.S., Bailey, D., Mujoo, K., Blake, M.E., et al. (2001) Avicins: triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Proc Natl Acad Sci U S A 98:5821–5826.PubMedCrossRefGoogle Scholar
  32. Huang, P.R., Yeh, Y.M., and Wang, T.C. (2005) Potent inhibition of human telomerase by helenalin. Cancer Lett 227:169–174.PubMedCrossRefGoogle Scholar
  33. Ito, S., Ihara, T., Tamura, H., Tanaka, S., Ikeda, T., Kajihara, H., et al. (2007) alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581:3217–3222.PubMedCrossRefGoogle Scholar
  34. Iwashina, T. (2003) Flavonoid function and activity to plants and other organisms. Biol Sci Space 17:24–44.PubMedCrossRefGoogle Scholar
  35. Kartal, M. (2007) Intellectual property protection in the natural product drug discovery, traditional herbal medicine and herbal medicinal products. Phytother Res 21:113–119.PubMedCrossRefGoogle Scholar
  36. Kennedy, J., Marchesi, J.R., and Dobson, A.D. (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20.PubMedCrossRefGoogle Scholar
  37. Klee, H. (2008) Plant biology: Hormones branch out. Nature 455:176–177.PubMedCrossRefGoogle Scholar
  38. Konig, G.M., Kehraus, S., Seibert, S.F., Abdel-Lateff, A., and Muller, D. (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238.PubMedCrossRefGoogle Scholar
  39. Korpan, Y.I., Nazarenko, E.A., Skryshevskaya, I.V., Martelet, C., Jaffrezic-Renault, N., and El’skaya, A.V. (2004) Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol 22:147–151.PubMedCrossRefGoogle Scholar
  40. Krishna, S., Woodrow, C.J., Staines, H.M., Haynes, R.K., and Mercereau-Puijalon, O. (2006) Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol Med 12:200–205.PubMedCrossRefGoogle Scholar
  41. Krungkrai, J. (2004) The multiple roles of the mitochondrion of the malarial parasite. Parasitology 129:511–524.PubMedCrossRefGoogle Scholar
  42. Krungkrai, J., Burat, D., Kudan, S., Krungkrai, S., and Prapunwattana, P. (1999) Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health 30:636–642.PubMedGoogle Scholar
  43. Landon, C., Pajon, A., Vovelle, F., and Sodano, P. (2000) The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs-AFP2, a plant antifungal protein. J Pept Res 56:231–238.PubMedCrossRefGoogle Scholar
  44. Lemeshko, V.V., Haridas, V., Quijano Perez, J.C., and Gutterman, J.U. (2006) Avicins, natural anticancer saponins, permeabilize mitochondrial membranes. Arch Biochem Biophys 454:114–122.PubMedCrossRefGoogle Scholar
  45. Li, W., Mo, W., Shen, D., Sun, L., Wang, J., Lu, S., et al. (2005a) Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet 1:e36.CrossRefGoogle Scholar
  46. Li, X.X., Davis, B., Haridas, V., Gutterman, J.U., and Colombini, M. (2005b) Proapoptotic triterpene electrophiles (avicins) form channels in membranes: cholesterol dependence. Biophys J 88:2577–2584.CrossRefGoogle Scholar
  47. Macias, F.A., Molinillo, J.M., Varela, R.M., and Galindo, J.C. (2007) Allelopathy - a natural alternative for weed control. Pest Manag Sci 63:327–348.PubMedCrossRefGoogle Scholar
  48. Madden, L.V., and Wheelis, M. (2003) The threat of plant pathogens as weapons against U.S. crops. Annu Rev Phytopathol 41:155–176.PubMedCrossRefGoogle Scholar
  49. Maor, R., and Shirasu, K. (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 8:399–404.PubMedCrossRefGoogle Scholar
  50. Meazza, G., Scheffler, B.E., Tellez, M.R., Rimando, A.M., Romagni, J.G., Duke, S.O., et al. (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60:281–288.PubMedCrossRefGoogle Scholar
  51. Morre, D.J., Grieco, P.A., and Morre, D.M. (1998) Mode of action of the anticancer quassinoids - inhibition of the plasma membrane NADH oxidase. Life Sci 63:595–604.PubMedCrossRefGoogle Scholar
  52. Morrissey, J.P., and Osbourn, A.E. (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724.PubMedGoogle Scholar
  53. Mujoo, K., Haridas, V., Hoffmann, J.J., Wachter, G.A., Hutter, L.K., Lu, Y., et al. (2001) Triterpenoid saponins from Acacia victoriae (Bentham) decrease tumor cell proliferation and induce apoptosis. Cancer Res 61:5486–5490.PubMedGoogle Scholar
  54. Nagamune, K., Beatty, W.L., and Sibley, L.D. (2007a) Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukaryot Cell 6:2147–2156.CrossRefGoogle Scholar
  55. Nagamune, K., Moreno, S.N., and Sibley, L.D. (2007b) Artemisinin-resistant mutants of Toxoplasma gondii have altered calcium homeostasis. Antimicrob Agents Chemother 51:3816–3823.CrossRefGoogle Scholar
  56. Odds, F.C., Brown, A.J., and Gow, N.A. (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279.PubMedCrossRefGoogle Scholar
  57. Osbourn, A.E. (2003) Saponins in cereals. Phytochemistry 62:1–4.PubMedCrossRefGoogle Scholar
  58. Parniske, M. (2005) Plant-fungal associations: cue for the branching connection. Nature 435:750–751.PubMedCrossRefGoogle Scholar
  59. Perret, X., Staehelin, C., and Broughton, W.J. (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201.PubMedCrossRefGoogle Scholar
  60. Peters, N.K., Frost, J.W., and Long, S.R. (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980.PubMedCrossRefGoogle Scholar
  61. Rao, A.V., and Gurfinkel, D.M. (2000) The bioactivity of saponins: triterpenoid and steroidal glycosides. Drug Metabol Drug Interact 17:211–235.PubMedCrossRefGoogle Scholar
  62. Rimando, A.M., Dayan, F.E., Czarnota, M.A., Weston, L.A., and Duke, S.O. (1998) A new photosystem II electron transfer inhibitor from sorghum bicolor. J Nat Prod 61:1456.PubMedCrossRefGoogle Scholar
  63. Romagni, J.G., Duke, S.O., and Dayan, F.E. (2000) Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol 123:725–732.PubMedCrossRefGoogle Scholar
  64. Schmidt, B.M., Ribnicky, D.M., Lipsky, P.E., and Raskin, I. (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3:360–366.PubMedCrossRefGoogle Scholar
  65. Simons, V., Morrissey, J.P., Latijnhouwers, M., Csukai, M., Cleaver, A., Yarrow, C., and Osbourn, A. (2006) Dual effects of plant steroidal alkaloids on Saccharomyces cerevisiae. Antimicrob Agents Chemother 50:2732–2740.PubMedCrossRefGoogle Scholar
  66. Singh, S.B., and Pelaez, F. (2008) Biodiversity, chemical diversity and drug discovery. Prog Drug Res 65:141, 143–174.Google Scholar
  67. Smith, J.G., and Nemerow, G.R. (2008) Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 3:11–19.PubMedCrossRefGoogle Scholar
  68. Sparg, S.G., Light, M.E., and van Staden, J. (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243.PubMedCrossRefGoogle Scholar
  69. Thevissen, K., Ferket, K.K., Francois, I.E., and Cammue, B.P. (2003a) Interactions of antifungal plant defensins with fungal membrane components. Peptides 24:1705–1712.CrossRefGoogle Scholar
  70. Thevissen, K., Kristensen, H.H., Thomma, B.P., Cammue, B.P., and Francois, I.E. (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971.PubMedCrossRefGoogle Scholar
  71. Thevissen, K., Francois, I.E., Takemoto, J.Y., Ferket, K.K., Meert, E.M., and Cammue, B.P. (2003b) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226:169–173.CrossRefGoogle Scholar
  72. Thevissen, K., Warnecke, D.C., Francois, I.E., Leipelt, M., Heinz, E., Ott, C., et al. (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905.PubMedCrossRefGoogle Scholar
  73. Thevissen, K., Idkowiak-Baldys, J., Im, Y.J., Takemoto, J., Francois, I.E., Ferket, K.K., et al. (2005) SKN1, a novel plant defensin-sensitivity gene in Saccharomyces cerevisiae, is implicated in sphingolipid biosynthesis. FEBS Lett 579:1973–1977.PubMedCrossRefGoogle Scholar
  74. Thomma, B.P., Cammue, B.P., and Thevissen, K. (2002) Plant defensins. Planta 216:193–202.PubMedCrossRefGoogle Scholar
  75. Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., et al. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200.PubMedCrossRefGoogle Scholar
  76. VanEtten, H.D., Mansfield, J.W., Bailey, J.A., and Farmer, E.E. (1994) Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins”. Plant Cell 6:1191–1192.PubMedCrossRefGoogle Scholar
  77. Verma, C., Seebah, S., Low, S.M., Zhou, L., Liu, S.P., Li, J., and Beuerman, R.W. (2007) Defensins: antimicrobial peptides for therapeutic development. Biotechnol J 2:1353–1359.PubMedCrossRefGoogle Scholar
  78. Vincken, J.P., Heng, L., de Groot, A., and Gruppen, H. (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68: 275–297.PubMedCrossRefGoogle Scholar
  79. Wink, M. (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19.PubMedCrossRefGoogle Scholar
  80. Wong, J.H., Xia, L., and Ng, T.B. (2007) A review of defensins of diverse origins. Curr Protein Pept Sci 8:446–459.PubMedCrossRefGoogle Scholar
  81. Xiao, J.X., Huang, G.Q., and Zhang, S.H. (2007) Soyasaponins inhibit the proliferation of Hela cells by inducing apoptosis. Exp Toxicol Pathol 59:35–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Microbiology Department University College CorkCorkIreland

Personalised recommendations