Skip to main content

Handling Dangerous Molecules: Transport and Compartmentation of Plant Natural Products

  • Chapter
  • First Online:

Abstract

The plant cell faces a dilemma: secondary products provide a multitude of defence and signalling functions, but their biosynthesis poses a severe burden, as it competes for energy sources and building blocks and may generate toxic products. Thus, evolution of recent secondary metabolites is not only driven by their advantageous functions but also selects for strict control mechanisms including the integration of biosynthesis into the cellular ultrastructure. In order to minimize the risk of self-intoxication, secondary products are usually targeted into compartments of low metabolic activity, notably the vacuole and the extracellular space. This is most obvious for phenolic substances but also for alkaloids, the best studied plant toxins. Compartmentation on a cellular or subcellular level is also instrumental in plants synthesizing preformed defence substances such as cyanogenic glycosides in order to assure that the active toxins are only liberated in case of an attack. Biosynthetic pathways and regulatory elements are well-established at least for some natural compound classes such as the flavonoids. In contrast, our knowledge of transport steps behind the subcellular distribution of these substances is just scratching the surface.

This chapter provides an overview on transport processes involved in secondary metabolite compartmentation that is concentrated at the best known areas of flavonoid and alkaloid production. Starting from ‘classical’ data of secondary metabolite transport we characterize the actually known transporters – which mainly belong to the ATP-Binding Cassette (ABC) or Multidrug and Toxic Extrusion (MATE) superfamilies – and their specific functioning in cells and tissues as analyzed by modern experimental techniques. The ‘transporter’ hypothesis is confronted with ‘vesicle transport’ models of subcellular trafficking. Although it appears premature to find common ground between these alternative models, the discovery of novel cellular functions of secondary metabolites facilitates our understanding of an intimate interplay between biosynthetic steps, transmembrane fluxes and metabolic channels, i.e. the plant’s solution to the ‘toxic dilemma’.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahams S, Lee E, Walker AR, Tanner GJ, et al (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 35:624–636

    PubMed  CAS  Google Scholar 

  • Achnine L, Blancaflor EB, Rasmussen S, et al (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    PubMed  CAS  Google Scholar 

  • Alcantara J, Bird DA, Franceschi VR, et al (2005) Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment. Plant Physiol 138:173–183

    PubMed  CAS  Google Scholar 

  • Alfenito MR, Souer E, Goodman CD, et al (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    PubMed  CAS  Google Scholar 

  • Allen RS, Miller JAC, Chitty JA, et al (2008) Metabolic engineering of morphinan alkaloids by over-expression and RNAi suppression of salutaridinol7-O-acetyltransferase in opium poppy. Plant Biotech J 6:22–30

    CAS  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA, et al (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nature Biotech 22:1559–1568

    CAS  Google Scholar 

  • Amann M, Wanner G, Zenk MH (1986) Intracellular compartmentation of two enzymes of berberine biosynthesis in plant cell cultures. Planta 167:310–320

    CAS  Google Scholar 

  • Anhalt S, Weissenböck G (1992) Subcellular localization of luteolin glucuronides and related enzymes in rye mesophyll. Planta 187:83–88

    CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, et al (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    PubMed  CAS  Google Scholar 

  • Arakawa H, Clark WG, Psenak M, et al (1992) Purification and characterization of dihydro­benzophenanthridine oxidase from elicited Sanguinaria canadensis cell cultures. Arch Biochem Biophys 299:1–7

    PubMed  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, et al (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-Binding Cassette (ABC) transporter mutants. Plant Physiol 146:762–771

    PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, et al (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    PubMed  CAS  Google Scholar 

  • Bajaj NP, McLean MJ, Waring MJ, et al (1990) Sequence-selective, pH-dependent binding to DNA of benzophenanthridine alkaloids. J Mol Recognit 3:48–54

    PubMed  CAS  Google Scholar 

  • Bartak P, Simanek V, Vlckova M, et al (2003) Interactions of sanguinarine and chelerythrine with molecules containing a mercapto group. J Phys Org Chem 16:803–810

    CAS  Google Scholar 

  • Bartholomew DM, Van Dyk DE, Lau S-MC, et al (2002) Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. Plant Physiol 130:1562–1572

    PubMed  CAS  Google Scholar 

  • Barz W, Mackenbrock U (1994) Constitutive and elicitation induced metabolism of isoflavones and pterocarpans in chickpea (Cicer arietinum) cell suspension cultures. Plant Cell, Tissue Organ Culture 38:199–211

    CAS  Google Scholar 

  • Baxter IR, Young JC, Armstrong G, et al (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci USA 102:2649–2654

    PubMed  CAS  Google Scholar 

  • Bird DA, Facchini PJ (2001) Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta 213:888–897

    PubMed  CAS  Google Scholar 

  • Bird D, Beisson F, Brigham A, et al (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    PubMed  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    PubMed  CAS  Google Scholar 

  • Blom TJM, Sierra M, van Vliet TB, et al (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta 183:170–177

    CAS  Google Scholar 

  • Blume DE, Jaworski JG, McClure JW (1979) Uridinediphosphate-glucose: Isovitexin 7-O-glucosyltransferase from barley protoplasts: Subcellular localization. Planta 146:199–202

    CAS  Google Scholar 

  • Bock A, Wanner G, Zenk MH (2002) Immunocytological localization of two enzymes involved in berberine biosynthesis. Planta 216:57–63

    PubMed  CAS  Google Scholar 

  • Braun R, Keller F (2000) Vacuolar chain elongation of raffinose oligosaccharides in Ajuga reptans. Funct Plant Biol 27:743–746

    CAS  Google Scholar 

  • Brouillard R, Dangles O (1994) Flavonoids and flower colour. In: H Harbord, JB Harborne, eds, The flavonoids: advances in research since 1986. CRC Press, Boca Raton, FL, pp 565–588

    Google Scholar 

  • Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31:394–395

    PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, et al (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    PubMed  CAS  Google Scholar 

  • Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    CAS  Google Scholar 

  • Burlat V, Oudin A, Courtois M, et al (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141

    PubMed  CAS  Google Scholar 

  • Chong J, Baltz R, Schmitt C, et al (2002) Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14:1093–1107

    PubMed  CAS  Google Scholar 

  • Chou WM., Kutchan TM (1998) Enzymatic oxidations in the biosynthesis of complex alkaloids. Plant J 15:289–300

    PubMed  CAS  Google Scholar 

  • Cline SD, Coscia CJ (1989) Ultrastructural changes associated with the accumulation and secretion of sanguinarine in Papaver bracteatum suspension cultures treated with fungal elicitor. Planta 178:303–314

    CAS  Google Scholar 

  • Cole SP, Bhardwaj G, Gerlach JH, et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    PubMed  CAS  Google Scholar 

  • Cole SPC, Deeley RG (2006) Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27:438–446

    PubMed  CAS  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973–977

    PubMed  CAS  Google Scholar 

  • Conn S, Zhang W, Franco C (2003) Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture. Biotechnol Lett 25:835–839

    PubMed  CAS  Google Scholar 

  • Costet L, Fritig B, Kauffmann S (2002) Scopoletin expression in elicitor-treated and tobacco mosaic virus-infected tobacco plants. Physiol Plant 115:228–235

    PubMed  CAS  Google Scholar 

  • De Luca, V. (1993) Indole alkaloid biosynthesis. In: Lea, P., ed, Methods in plant biochemistry. Enzymes of secondary metabolism, Vol. 9, pp 345–368, Academic Press

    Google Scholar 

  • De Luca V, St-Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 4:168–173

    Google Scholar 

  • De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85:1099–1102

    PubMed  CAS  Google Scholar 

  • Dean JV, Devarenne TP (1997) Peroxidase-mediated conjugation of glutathione to unsaturated phenylpropanoids. Evidence against glutathione S-transferase involvement. Physiol Plant 99:271–278

    CAS  Google Scholar 

  • Dean JV, Devarenne TP, Lee IS, et al (1995) Properties of a maize glutathione S-transferase that conjugates coumaric acid and other phenylpropanoids. Plant Physiol 108:985–994

    PubMed  CAS  Google Scholar 

  • Dean JV, Mills JD (2004) Uptake of salicylic acid 2-O-ß-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiol Plant 120:603–612

    PubMed  CAS  Google Scholar 

  • Debeaujon I, Peeters AJ, Leon-Kloosterziel KM, et al (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    PubMed  CAS  Google Scholar 

  • Debeaujon I, Nesi N, Perez P, et al (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531

    PubMed  CAS  Google Scholar 

  • Deeley RG, Cole SPC (2006) Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 580:1103–1111

    PubMed  CAS  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, et al (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    PubMed  CAS  Google Scholar 

  • Deus-Neumann B, Zenk MH (1984) A highly selective alkaloid uptake system in vacuoles of higher plants. Planta 162:250–260

    CAS  Google Scholar 

  • Deus-Neumann B, Zenk MH (1986) Accumulation of alkaloids in plant vacuoles does not involve an ion-trap mechanism. Planta 167:44–53

    CAS  Google Scholar 

  • Diener AC, Gaxiola RA, Fink GR (2001) Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. Plant Cell 13:1625–1638

    PubMed  CAS  Google Scholar 

  • Drose S, Altendorf K (1997) Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol 200:1–8

    PubMed  CAS  Google Scholar 

  • Dudler R, Hertig C (1992) Structure of an Mdr-like gene from Arabidopsis thaliana - Evolutionary implications. J Biol Chem 267:5882–5888

    PubMed  CAS  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    PubMed  CAS  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, et al (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    PubMed  CAS  Google Scholar 

  • Facchini PJ, Bird DA (1998) Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures. In Vitro Cellular and Developmental Biology Plant 34:69–79.

    CAS  Google Scholar 

  • Facchini PJ, St-Pierre B (2005) Synthesis and trafficking of alkaloid biosynthetic enzymes. Curr Opin Plant Biol 8:657–666

    PubMed  CAS  Google Scholar 

  • Facchini PF (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    PubMed  CAS  Google Scholar 

  • Faddeeva MD, Beliaeva TN (1997) Sanguinarine and ellipticine cytotoxic alkaloids isolated from well-known antitumor plants. Intracellular targets of their action. Tsitologiia 39:181–208

    PubMed  CAS  Google Scholar 

  • Färber K, Schumann B, Miersch O, et al (2003) Selective desensitization of jasmonate- and pH-dependent signaling in the induction of benzophenanthridine biosynthesis in cells of Eschscholzia californica. Phytochemistry 62:491–500

    PubMed  Google Scholar 

  • Forestier C, Frangne N, Eggmann T, et al (2003) Differential sensitivity of plant and yeast MRP (ABCC)-mediated organic anion transport processes towards sulfonylureas. FEBS Lett 554:23–29

    PubMed  CAS  Google Scholar 

  • Frangne N, Eggmann T, Koblischke C, et al (2002) Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H+-antiport and ATP-binding cassette-type mechanisms. Plant Physiol 128:726–733

    PubMed  CAS  Google Scholar 

  • Frehner M, Keller F, Wiemken A (1984) Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jerusalem artichoke tubers (Helianthus tuberosus L.). J Plant Physiol. 116:197–208

    CAS  Google Scholar 

  • Galneder E, Rueffer M, Wanner G, et al (1988) Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures. Plant Cell Rep 7:1–4

    CAS  Google Scholar 

  • Gao XQ, Li CG, Wei PC, et al (2005) The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. Plant Physiol 139:1207–1216

    PubMed  CAS  Google Scholar 

  • Gerardy R, Zenk MH (1993) Formation of salutaridine from (R)-Reticuline by a membrane bound cytochrome P-450 enzyme from ‘Papaver somniferum’. Phytochemistry 32, Nr. 1:79–86

    Google Scholar 

  • Goodman CD, Casati P, Walbot V (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16:1812

    PubMed  CAS  Google Scholar 

  • Grandmaison J, Ibrahim RK (1996) Evidence for nuclear protein binding of flavonol sulfate esters in Flaveria chloraefolia. J Plant Physiol 147:653–660

    CAS  Google Scholar 

  • Grotewold E, Chamberlin M, Snook M, et al (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10:721–740

    PubMed  CAS  Google Scholar 

  • Guo Z, Severson RF, Wagner GJ (1994) Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes. Arch Biochem Biophys 308:103–108

    PubMed  CAS  Google Scholar 

  • Guz NR, Stermitz FR, Johnson JB, et al (2001) Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance pump: structure – activity relationships. J Med Chem 44:261–268

    PubMed  CAS  Google Scholar 

  • Haralampidis K, Bryan G, Qi X, et al (2001) A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc Natl Acad Sci USA 98:13431–13436

    PubMed  CAS  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    PubMed  CAS  Google Scholar 

  • Harborne JB, Williams CA, Greenham J, et al (1994) Variations in the lipophilic and vacuolar flavonoids of the genus Vellozia. Phytochemistry 35:1475–1480

    CAS  Google Scholar 

  • Harborne JB (1988) Flavonoids in the environment: structure-activity relationships. Prog Clin Biol Res 280:17–27

    PubMed  CAS  Google Scholar 

  • Harper JF, Manney L, Sussman MR (1994) The plasma membrane H+ ATPase gene family in Arabidopsis: Genomic sequence of AHA10 which is expressed primarily in developing seeds. Mol Gen Genet 244:572–587

    PubMed  CAS  Google Scholar 

  • Hartmann T. (1999) Chemical ecology of pyrrolizidine alkaloids. Planta, 207, 483–495

    CAS  Google Scholar 

  • Hashimoto T. Yamada Y. (1994) Alkaloid biogenesis: molecular aspects. Annu Rev Plant Physiol Plant Mol Biol, 45, 257–285.

    CAS  Google Scholar 

  • Hause B, Meyer K, Viitanen PV, et al (2002) Immunolocalization of 1-O-sinapoylglucose:malate sinapoyltransferase in Arabidopsis thaliana. Planta 215:26–32

    PubMed  CAS  Google Scholar 

  • Hauser M-T, Wink M (1990) Uptake of alkaloids by latex vesicles and isolated mesophyll vacuoles of Chelidonium majus (Papaverceae). Z. Naturforsch 45c, 949–995

    Google Scholar 

  • Hinder B, Schellenberg M, Rodon S, et al (1996) How plants dispose of chlorophyll catabolites – Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J Biol Chem 271:27233–27236

    PubMed  CAS  Google Scholar 

  • Hopp W, Seitz HU (1987) The uptake of acylated anthocyanin into isolated vacuoles from a cell suspension culture of Daucus carota. Planta 170:74–85

    CAS  Google Scholar 

  • Hsieh K, Huang AHC (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596

    PubMed  CAS  Google Scholar 

  • Hutzler P, Fischbach R, Heller W, et al (1998) Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot 49:953–965

    CAS  Google Scholar 

  • Ibrahim RK, De Luca V, Khouri H, et al (1987) Enzymology and compartmentation of polymethylated flavonol glucosides in Chrysosplenium americanum. Phytochemistry 26:1237–1245

    Google Scholar 

  • Ibrahim R (1990) Immunocytochemical localization of plant secondary metabolites and enzymes involved in their biosynthesis. Phytochem Anal 1:49–59

    Google Scholar 

  • Ikezawa N, Tanaka M, Nagayoshi M, et al (2003) Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells. J Biol Chem 278:38557–38565

    PubMed  CAS  Google Scholar 

  • Irani NG, Grotewold E (2005) Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells. BMC Plant Biol 5:7

    PubMed  Google Scholar 

  • Jans B (1974) Untersuchungen am Milchsaft des Schöllkrauts (Chelidonium majus) Ber. Schweiz Bot Ges 83:306–344

    CAS  Google Scholar 

  • Jasinski M, Stukkens Y, Degand H, et al (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107

    PubMed  CAS  Google Scholar 

  • Jorgensen K, Rasmussen AV, Morant M, et al (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    PubMed  CAS  Google Scholar 

  • Kaneda M, Rensing KH, Wong JCT, et al (2008) Tracking monolignols during wood development in lodgepole pine. Plant Physiol. 147:1750–1760

    PubMed  CAS  Google Scholar 

  • Kempe I (2008) Analyse der Benzylisochinolinalkaloid-Biosynthese des Papaver somniferum L. mit Hilfe der RNAi-Technik. Dissertation (Ph.D.) Martin-Luther-Universität Halle, 2008.

    Google Scholar 

  • Kitamura S (2006) Transport of flavonoids. In: E Grotewold, ed, The science of flavonoids. Springer Science and Business Media, New York, pp 123–146

    Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    PubMed  CAS  Google Scholar 

  • Klein M, Martinoia E, Hoffmann-Thoma G, et al (2000) A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. Plant J 21:289–304

    PubMed  CAS  Google Scholar 

  • Klein M, Martinoia E, Hoffmann-Thoma G, et al (2001) The ABC-like vacuolar transporter for rye mesophyll flavone glucuronides is not species-specific. Phytochemistry 56:153–159

    PubMed  CAS  Google Scholar 

  • Klein M, Martinoia E, Weissenböck G (1997) Transport of lucifer yellow CH into plant vacuoles – evidence for direct energization of a sulphonated substance and implications for the design of new molecular probes. FEBS Lett 420:86–92

    PubMed  CAS  Google Scholar 

  • Klein M, Martinoia E, Weissenböck G (1998) Directly energized uptake of ß-estradiol 17-(ß-D-glucuronide) in plant vacuoles is strongly stimulated by glutathione conjugates. J Biol Chem 273:262–270

    PubMed  CAS  Google Scholar 

  • Klein M, Perfus-Barbeoch L, Frelet A, et al (2003) The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J 33:119–129

    PubMed  CAS  Google Scholar 

  • Klein M, Weissenböck G, Dufaud A, et al (1996) Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem 271:29666–29671

    PubMed  CAS  Google Scholar 

  • Kreuz K, Tommasini R, Martinoia E (1996) Old enzymes for a new job - Herbicide detoxification in plants. Plant Physiol 111:349–353

    PubMed  CAS  Google Scholar 

  • Kutchan TM, Rush M, Coscia CJ (1986) Subcellular localization of alkaloids and dopamine in different vacuolar compartments of Papaver bracteatum. Plant Physiol 81:61–166

    Google Scholar 

  • Larsen ES, Alfenito MR, Briggs WR, et al (2003) A carnation anthocyanin mutant is complemented by the glutathione S-transferases encoded by maize Bz2 and petunia An9. Plant Cell Rep 21:900–904

    PubMed  CAS  Google Scholar 

  • Latchinian-Sadek L, Ibrahim RK (1991) Flavonol ring B-specific O-glucosyltransferases: purification, production of polyclonal antibodies, and immunolocalization. Arch Biochem Biophys 289:230–236

    PubMed  CAS  Google Scholar 

  • Lee KS, Tsien RW (1983) Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302:790–794

    PubMed  CAS  Google Scholar 

  • Lehfeldt C, Shirley AM, Meyer K, et al (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12:1295–1306

    PubMed  CAS  Google Scholar 

  • Leier I, Jedlitschky G, Buchholz U, et al (1994) The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 269:27807–27810

    PubMed  CAS  Google Scholar 

  • Lenz R, Zenk MH (1995) Purification and properties of codeinone reductase (NADPH) from Papaver somniferum cell cultures and differentiated plants. Eur J Biochem 233:132–139

    PubMed  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, et al (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    PubMed  CAS  Google Scholar 

  • Leslie EM, Deeley RG, Cole SPC (2003) Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). Drug Metab Dispos 31:11–15

    PubMed  CAS  Google Scholar 

  • Leslie EM, Mao Q, Oleschuk CJ, et al (2001) Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and ATPase activities by interaction with dietary flavonoids. Mol Pharmacol 59:1171–1180

    PubMed  CAS  Google Scholar 

  • Li ZS, Alfenito M, Rea PA, et al (1997) Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump. Phytochemistry 45:689–693

    PubMed  CAS  Google Scholar 

  • Li L, He Z, Pandey GK, et al (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368

    PubMed  CAS  Google Scholar 

  • Li ZS, Szczypka M, Lu YP, et al (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271:6509–6517

    PubMed  CAS  Google Scholar 

  • Li ZS, Zhao Y, Rea PA (1995) Magnesium ­adenosine 5’-triphosphate-energized transport of glutathione-S-conjugates by plant vacuolar membrane vesicles. Plant Physiol 107:1257–1268

    PubMed  CAS  Google Scholar 

  • Lim EK, Li Y, Parr A, et al (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem 276: 4344–4349

    PubMed  CAS  Google Scholar 

  • Lin Y, Irani NG, Grotewold E (2003) Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells. BMC Plant Biol 3:10

    PubMed  Google Scholar 

  • Liu G, Sanchez-Fernandez R, Li ZS, et al (2001) Enhanced multispecificity of Arabidopsis vacuolar multidrug resistance-associated protein-type ATP-binding cassette transporter, AtMRP2. J Biol Chem 276:8648–8656

    CAS  Google Scholar 

  • Loyola-Vargas VM, Broeckling CD, Badri D, et al (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310

    PubMed  CAS  Google Scholar 

  • Lu YP, Li ZS, Rea PA (1997) AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci USA 94:8243–8248

    PubMed  CAS  Google Scholar 

  • Lu YP, Li ZS, Drozdowicz YM, et al (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: Functional comparisons with AtMRP1. Plant Cell 10:267–282

    PubMed  CAS  Google Scholar 

  • Luo B, Xue XY, Hu WL, et al (2007) An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol 48:1790–1802

    PubMed  CAS  Google Scholar 

  • Madyastha KM, Ridgway JE, Dwyer JG, et al (1977) Subcellular localization of a cytochrome P-450-dependent monooxygenase in vesicles of the higher plant Catharanthus roseus. J Cell Biol 72:303–313

    Google Scholar 

  • Magalhaes JV, Liu J, Guimares CT, et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics 39:1156–1161

    PubMed  CAS  Google Scholar 

  • Mahady GB, Beecher CW (1994) Quercetin-induced benzophenanthridine alkaloid production in suspension cell cultures of Sanguinaria canadensis. Planta Med 60:553–557

    PubMed  CAS  Google Scholar 

  • Marinova K, Kleinschmidt K, Weissenböck G, et al (2007a) Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiol 144:432–444

    CAS  Google Scholar 

  • Marinova K, Pourcel L, Weder B, et al (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038

    PubMed  CAS  Google Scholar 

  • Markham KR, Gould KS, Winefield CS, et al (2000) Anthocyanic vacuolar inclusions - their nature and significance in flower colouration. Phytochemistry 55:327–336

    PubMed  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    PubMed  CAS  Google Scholar 

  • Marrs KA, Alfenito MR, Lloyd AM, et al (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397

    PubMed  CAS  Google Scholar 

  • Martinoia E, Grill E, Tommasini R, et al (1993) ATP-dependent glutathione S-conjugate export pump in the vacuolar membrane of plants. Nature 364:247–249

    CAS  Google Scholar 

  • Martinoia E, Klein M, Sanchez-Fernandez R, et al (2000) Vacuolar uptake of secondary metabolites and xenobiotics. In: DG Robinson, JC Rogers, eds, Vacuolar compartments, Vol 5. Sheffield Academic Press, Sheffield, pp 221–253

    Google Scholar 

  • Masuda S, Terada T, Yonezawa A, et al (2006) Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific Multidrug and Toxin Extrusion 2. J Am Soc Nephrol 17:2127–2135

    PubMed  CAS  Google Scholar 

  • Matern U (1987) Die Isomerenfall für Sekundärme-tabolite, eine Alternative zum Ionenfallen-Modell. Biologie in unserer Zeit 17:148–152

    CAS  Google Scholar 

  • Matern U, Heller W, Himmelspach K (1983) Conformational-changes of apigenin 7-O-(6-O-malonylglucoside), a vacuolar pigment from parsley, with solvent composition and proton concentration. Eur J Biochem 133:439–448

    PubMed  CAS  Google Scholar 

  • Matern U, Reichenbach C, Heller W (1986) Efficient uptake of flavonoids into parsley (Petroselinum hortense) vacuoles requires acylated glycosides. Planta 167:183–189

    CAS  Google Scholar 

  • Matile P (1976) Lokalization of alkaloids and mechanism of their accumulation in vacuoles of Chelidonium majus lacticifers. Nova Acta Leopoldina, Suppl. Nr 7, Symposium Secondary Metabolism and Coevolution, 139–156

    Google Scholar 

  • Matile P (1984) Das toxische Kompartiment der Pflanzenzelle. Naturwiss. 71:18–24

    CAS  Google Scholar 

  • Matros A, Mock H-P (2004) Ectopic expression of a UDP-glucose:phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with Potato Virus Y. Plant Cell Physiol 45:1185–1193

    PubMed  CAS  Google Scholar 

  • McKnight TD, Bergey DR, Burnett RJ, et al (1991) Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta 185:148–152

    CAS  Google Scholar 

  • Morita Y, Kodama K, Shiota S, et al (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782

    PubMed  CAS  Google Scholar 

  • Morita Y, Kataoka A, Shiota S, et al (2000) NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol 182:6694–6697

    PubMed  CAS  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, et al (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    PubMed  CAS  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44: 581–594

    PubMed  CAS  Google Scholar 

  • Mylona P, Owatworakit A, Papadopoulou K, et al (2008) Sad3 and Sad4 are required for saponin biosynthesis and root development in oat. Plant Cell 20:201–212

    PubMed  CAS  Google Scholar 

  • Nakagawa K, Konagai A, Fukui H, et al (1984) Release and crystallization of berberine in the liquid medium of Thalictrum minus cell suspension cultures. Plant Cell Reports 3:254–257

    CAS  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, et al (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286

    PubMed  CAS  Google Scholar 

  • Nielsen KA, Gotfredsen CH, Buch-Pedersen MJ, et al (2004) Inclusions of flavonoid 3-deoxyanthocyanidins in Sorghum bicolor self-organize into spherical structures. Physiol Molec Plant Pathol 65:187–196

    CAS  Google Scholar 

  • Nozue M, Yasuda H (1985) Occurrence of anthocynoplasts in cell suspension culture of sweet potato. Plant Cell Reports 4:252–255

    CAS  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, et al (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593

    PubMed  CAS  Google Scholar 

  • Ono E, Hatayama M, Isono Y, et al (2006) Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J 45:133–143

    PubMed  CAS  Google Scholar 

  • Onyilagha JC, Grotewold E (2004) The biology and structural distribution of surface flavonoids Recent Res Devel Plant Sci 2:1–18

    Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    PubMed  CAS  Google Scholar 

  • Osbourn AE (2003) Saponins in cereals. Phytochemistry 62:1–4

    PubMed  CAS  Google Scholar 

  • Otani M, Shitan N, Sakai K, et al (2005) Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol 138:1939–1946

    PubMed  CAS  Google Scholar 

  • Otsuka M, Matsumoto T, Morimoto R, et al (2005) A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA 102:17923–17928

    PubMed  CAS  Google Scholar 

  • Panicot M, Minguet EG, Ferrando A, et al (2004) A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14:2539–2551

    Google Scholar 

  • Panikashvili D, Savaldi-Goldstein S, Mandel T, et al (2007) The Arabidopsis DESPERADO/ AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145:1345–1360

    PubMed  CAS  Google Scholar 

  • Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microb Mol Biol Rev 60:575–608

    CAS  Google Scholar 

  • Pecket RC, Small CJ (1980) Occurrence, location and development of anthocyanoplasts. Phytochemistry 19:2571–2576

    Google Scholar 

  • Peer WA, Brown DE, Tague BW, et al (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548

    PubMed  CAS  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ, et al (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    PubMed  CAS  Google Scholar 

  • Pighin JA, Zheng H, Balakshin LJ, et al (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    PubMed  CAS  Google Scholar 

  • Polster J, Dithmar H, Burgemeister R, et al W (2006) Flavonoids in plant nuclei: detection by laser microdissection and pressure catapulting (LMPC), in vivo staining, and UV-visible spectroscopic titration. Physiol Plant 128:163–174

    CAS  Google Scholar 

  • Poustka F, Irani NG, Feller A, et al (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145:1323–1335

    PubMed  CAS  Google Scholar 

  • Rasmussen S, Dixon RA (1999) Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 11:1537–1552

    PubMed  CAS  Google Scholar 

  • Rataboul P, Alibert G, Boller T, et al (1985) Intracellular transport and vacuolar accumulation of o-coumaric acid glucoside in Melilotus alba mesophyll cell protoplasts. Biochim Biophys Acta 816:25–36

    CAS  Google Scholar 

  • Rea PA, Li ZS, Lu YP, et al (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    PubMed  CAS  Google Scholar 

  • Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787–1799

    PubMed  CAS  Google Scholar 

  • Roos, W., Luckner, M. (1986) The spatial organization of secondary metabolism in microbial and plant cells. In: T. A. V. Subramanian, ed, Cell metabolism: growth and environment, Vol. 1. CRC Press, Boca Raton, FL, pp 45–73

    Google Scholar 

  • Rueffer M, Amman M, Zenk MH (1986) S-Adenosyl-L-methionine: columbamine-O-methyl transferase, a compartmentalized enzyme in protoberberine biosynthesis. Plant Cell Rep 3:182–185

    Google Scholar 

  • Russel FGM, Koenderink JB, Masereeuw R (2008) Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 29: 200–207

    PubMed  CAS  Google Scholar 

  • Saier MH, Jr., Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12:205–213

    PubMed  CAS  Google Scholar 

  • Saito K, Suzuki H, Takamatsu S, Murakoshi I, (1992) Acyltransferases for lupin alkaloids in Lupinus hirsutus. Phytochemistry 32: 87–91

    CAS  Google Scholar 

  • Sakai K, Shitan N, Sato F, et al (2002) Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein. J Exp Bot 53:1879–1886

    PubMed  CAS  Google Scholar 

  • Samanani N, Alcantara J, Bourgault R, et al (2006) The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Plant J 47:547–563

    PubMed  CAS  Google Scholar 

  • Samanani N, Park SU, Facchini PJ (2005) Cell type-specific localization of transcripts encoding nine consecutive enzymes involved in protoberberine alkaloid biosynthesis. Plant Cell 17:915–926

    PubMed  CAS  Google Scholar 

  • Santelia D, Henrichs S, Vincenzetti V, et al (2008). Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J. Biol. Chem. 283:31218–31226.

    PubMed  CAS  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BS (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 280:23735–23740

    PubMed  CAS  Google Scholar 

  • Schmeller T, Latz-Brüning B, Wink M (1997) Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44:257–266

    PubMed  CAS  Google Scholar 

  • Schulz B, Frommer WB (2004) A plant ABC transporter takes the lotus seat. Science 306:622–625

    PubMed  CAS  Google Scholar 

  • Schulz M, Weissenböck G (1986) Isolation and separation of epidermal and mesophyll protoplasts from rye primary leaves – tissue specific characteristics of secondary phenolic product accumulation. Z Naturforsch [C] 41:22–27

    CAS  Google Scholar 

  • Schumacher HM, Zenk MH (1988) Partial purification and characterization of dihydrobenzophenanthridine oxidase from Eschscholtzia californica cell suspension cultures. Plant Cell Rep 7:43–46

    CAS  Google Scholar 

  • Sharma V, Strack D (1985) Vacuolar localization of 1-sinapolglucose: l-malate sinapoyltransferase in protoplasts from cotyledons of Raphanus sativus. Planta 163:563–568

    CAS  Google Scholar 

  • Shiono M, Matsugaki N, Takeda K (2005) Phytochemistry: structure of the blue cornflower pigment. Nature 436:791

    PubMed  CAS  Google Scholar 

  • Shirley AM, McMichael CM, Chapple C (2001) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J 28:83–94

    PubMed  CAS  Google Scholar 

  • Shirley AM, Chapple C (2003) Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. J Biol Chem 278:19870–19877

    PubMed  CAS  Google Scholar 

  • Shitan N, Bazin I, Dan K, et al (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci USA 100:751–756

    PubMed  CAS  Google Scholar 

  • Shitan N, Kiuchi F, Sato F, Yazaki K, Yoshimatsu K. (2005) Establishment of Rhizobium-mediated transformation of Coptis japonica and molecular analyses of transgenic plants. Plant Biotechnol., 22,:113–118.

    CAS  Google Scholar 

  • Shitan N, Yazaki K (2007) Accumulation and membrane transport of plant alkaloids. Current Pharmaceutical Biotechnology 8:244–252

    PubMed  CAS  Google Scholar 

  • Slaninova I., Taborska E, Bochorakova H, et al (2001) Interaction of benzo[c]phenanthridine and protoberberine alkaloids with animal and yeast cells. Cell Biol Toxicol 17:51–63

    PubMed  CAS  Google Scholar 

  • Small CJ, Pecket RC (1982) The ultrastructure of anthocyanoplasts in red cabbage. Planta 154:97–99

    Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248:1637–1639

    PubMed  CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    PubMed  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol J, et al (2002) ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14:2121–2135

    PubMed  CAS  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    PubMed  CAS  Google Scholar 

  • St-Pierre B, De Luca V (1995) A cytochrome P-450 monooxygenase catalyzes the first step in the conversion of tabersonine to vindoline in Catharanthus roseus. Plant Physiol 109:131–139

    PubMed  CAS  Google Scholar 

  • Stafford HA (1990) Flavonoid metabolism. CRC Press, Boca Raton, FL

    Google Scholar 

  • Stermitz FR, Lorenz P, Tawara JN, et al (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5’-methoxyhydnocarpin, a multidrug pump inhibitor. PROC NATL ACAD SCI USA 97:1433–1437

    PubMed  CAS  Google Scholar 

  • Stevens LH, Blom TJM, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:563–576

    Google Scholar 

  • Strack D (1982) Development of 1-O-sinapoyl-b-D-glucose: L-malate sinapoyltransferase activity in cotyledons of red radish (Raphanus sativus L. var. sativus). Planta 155:31–36

    CAS  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-rhizobium symbiosis. Plant Physiol 144:2000–2008

    PubMed  CAS  Google Scholar 

  • Suzuki H, Koike Y, Murakoshi I, et al (1996) Subcellular localization of acyltransferases for quinolizidine alkaloid biosynthesis in Lupinus. Phytochemistry 42:1557–1562

    CAS  Google Scholar 

  • Taguchi G, Fujikawa S, Yazawa T, et al (2000) Scopoletin uptake from culture medium and accumulation in the vacuoles after conversion to scopolin in 2,4-D-treated tobacco cells. Plant Sci 151:153–161

    PubMed  CAS  Google Scholar 

  • Terasaka K, Sakai K, Sato F, et al (2003) Thalictrum minus cell cultures and ABC-like transporter. Phytochemistry 62:483–489

    PubMed  CAS  Google Scholar 

  • Ukitsu H, Kuromori T, Toyooka K, et al (2007) Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene. Plant Cell Physiol 48:1524–1533

    PubMed  CAS  Google Scholar 

  • Valant-Vetschera KM, Wollenweber E (2001) Exudate flavonoid aglycones in the alpine species of Achillea sect. Ptarmica: Chemosystematics of A. moschata and related species (Compositae-Anthemideae). Biochem Syst Ecol 29:149–159

    PubMed  CAS  Google Scholar 

  • Valant-Vetschera KM, Wollenweber E, Faure R, et al (2003) New exudate flavonoids of species from the Chrysanthemum complex (Asteraceae-Anthemideae). Biochem Syst Ecol 31:545–548

    CAS  Google Scholar 

  • Verrier PJ, Bird D, Burla B, et al (2008) Plant ABC proteins – a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    PubMed  CAS  Google Scholar 

  • Viehweger K, Lein W, Schumann B, Roos W, et al (2006). A G protein controls a pH dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. Plant Cell 18:1510–1523

    PubMed  CAS  Google Scholar 

  • Walczak HA, Dean JV (2000) Vacuolar transport of the glutathione conjugate of trans-cinnamic acid. Phytochemistry 53:441–446

    PubMed  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, et al (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    PubMed  CAS  Google Scholar 

  • Wang E, Wagner GJ (2003) Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216:686–691

    PubMed  CAS  Google Scholar 

  • Wang J, Raman H, Zhou M, et al (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    PubMed  CAS  Google Scholar 

  • Weid M, Ziegler J, Kutchan TM (2004) The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA 101:13957–13962

    PubMed  CAS  Google Scholar 

  • Weiss D, Baumert A, Vogel M, Roos W (2006) Sanguinarine reductase, a key enzyme of benzophenanthridine detoxification. Plant Cell Environ 29:291–302

    PubMed  CAS  Google Scholar 

  • Weisskopf L, Abou-Mansour E, Fromin N, et al (2006) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927

    PubMed  CAS  Google Scholar 

  • Werner C, Matile P (1985) Accumulation of coumarylglucosides in vacuoles of barley mesophyll protoplasts. J Plant Physiol 118:237–249

    CAS  Google Scholar 

  • Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. In: RA Leigh, D Sanders, JA Callow, eds, The plant vacuole. Advances in Botanical Reserach, Vol 25. Academic Press, London/New York, pp 141–169

    Google Scholar 

  • Wink M, Roberts MF (1998) Compartmentation of alkaloid biosynthesis, transport and storage. In: Roberts MF, Wink M eds, Alkaloids: biochemistry, ecology and medicinal applications, Plenum Press, New York, pp 239–262

    Google Scholar 

  • Wink M, Schmeller T, Latz-Bruning B (1998) Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA, and other molecular targets. J Chem Ecol 24:1881–1937

    CAS  Google Scholar 

  • Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    PubMed  CAS  Google Scholar 

  • Wolff J, Knipling L (1993) Antimicrotubule properties of benzophenanthridine alkaloids. Biochem 32:13334–13339

    CAS  Google Scholar 

  • Wollenweber E, Dorr M, Rivera D, et al (2003) Externally accumulated flavonoids in three Mediterranean Ononis species. Z Naturforsch [C] 58:771–775

    CAS  Google Scholar 

  • Wu CP, Calcagno AM, Hladky SB, Ambudkar SV, Barrand MA (2005) Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5). FEBS J. 272: 4725–4740

    PubMed  CAS  Google Scholar 

  • Xu LF, Chu WJ, Qing XY, et al (2006) Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology 50:934–940

    PubMed  CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307

    PubMed  CAS  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    PubMed  CAS  Google Scholar 

  • Yazaki K, Shitan N, Takamatsu H, et al (2001) A novel Coptis japonica multidrug resistance protein preferentially expressed in the alkaloid-accumulating rhizome. J Exp Bot 52: 877–879

    PubMed  CAS  Google Scholar 

  • Yazaki K, Sugiyama A, Morita M, et al (2007) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev. DOI 10.1007/s11101-007-9079-8

    Google Scholar 

  • Zenk MH (1994) The formation of benzophenanthridine alkaloids. Pure Appl Chem 66:2023–2028

    CAS  Google Scholar 

  • Zhang H, Wang L, Deroles S, et al (2006) New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biology 6:29

    PubMed  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid Biosynthesis: Metabolism and Trafficking. Annu Rev Plant Biol 59:735–769

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the former lab of MK was supported by the Swiss National Science Foundation. MK wishes to thank his former team, especially E. Martinoia, B. Weder, K. Marinova, C. Ballmann, K. Schmid, A. Polinceusz, H. Grob, B. Burla and T. Kretschmar (all Univ. of Zurich). MK acknowledges Daniel Studer, University of Bern, for his experimental help to obtain Fig. 3. Work in the lab of WR was supported by the Deutsche Forschungsgemeinschaft and the Excellence Cluster Sachsen-Anhalt. WR gratefully acknowledges contributions of D. Weiss, K. Färber, K. Viehweger, M. Heinze, M. Hieke, G. Danders and K. Thomasch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Roos .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to Prof. N. Amrhein, ETH Zurich, on the occasion of his retirement.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Klein, M., Roos, W. (2009). Handling Dangerous Molecules: Transport and Compartmentation of Plant Natural Products. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_11

Download citation

Publish with us

Policies and ethics