Cardiac Arrhythmias

  • Derek J. Dosdall
  • Raymond E. Ideker

More than a century ago, investigators demonstrated that large electrical stimuli can cause sudden cardiac arrest [1,2]. Direct electrical stimulation of the heart can cause ventricular fibrillation (VF), which is a rapid uncoordinated contraction of the heart muscle that causes a loss of blood flow to the heart, brain, and other tissues. VF rapidly leads to a loss of consciousness which is followed by death unless electrical defibrillation is performed within a few minutes. Many studies have been performed during the past century to investigate the different types and strengths of electrical stimuli that may initiate cardiac arrhythmias [3].


Sudden Cardiac Death Ventricular Fibrillation Transmembrane Potential Myocardial Necrosis Ectopic Beat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoffa M, Ludwig C. Einige neue versuche über herzebewegung. Z Rationelle Med. 1850;9:107–144.Google Scholar
  2. 2.
    Prevost JL, Battelli F. Sur quelques effets des décharges électriques sur le coeur des Mammifères. Comptes Rendus des Seances, Academi des Sciences. 1899;129:1267–1268.Google Scholar
  3. 3.
    Reilly JP. Cardiac sensitivity to electrical stimulation. In: Reilly JP, ed. Applied Bioelectricity: From Electrical Stimulation to Electropathology. New York: Springer; 1998: 194–239.Google Scholar
  4. 4.
    Strote J, Range Hutson H. Taser use in restraint-related deaths. Prehosp Emerg Care. Oct–Dec 2006;10(4):447–450.PubMedCrossRefGoogle Scholar
  5. 5.
    McDaniel WC, Stratbucker RA, Nerheim M, et al. Cardiac safety of neuromuscular incapacitating defensive devices. Pacing Clin Electrophysiol. Jan 2005;28 Suppl 1:S284–287.PubMedCrossRefGoogle Scholar
  6. 6.
    Nanthakumar K, Billingsley IM, Masse S, et al. Cardiac electrophysiological consequences of neuromuscular incapacitating device discharges. J Am Coll Cardiol. Aug 15 2006;48(4):798–804.PubMedCrossRefGoogle Scholar
  7. 7.
    Wu JY, Sun H, O'Rourke AP, et al. Taser dart-to-heart distance that causes ventricular fibrillation in pigs. IEEE Trans Biomed Eng. Mar 2007;54(3):503–508.PubMedCrossRefGoogle Scholar
  8. 8.
    Ho J, Reardon R, Heegaard W. Deaths in police custody: an 8 month surveillance study. Annals Emerg Med. 2005;46 (Suppl) abstract:S94.CrossRefGoogle Scholar
  9. 9.
    Zipes DP, Wellens HJJ. Sudden cardiac death. Circulation. 1998;98:2334–2351.PubMedGoogle Scholar
  10. 10.
    Bunch TJ, Hohnloser SH, Gersh BJ. Mechanisms of sudden cardiac death in myocardial infarction survivors: insights from the randomized trials of implantable cardioverter-defibrillators. Circulation. May 8 2007;115(18):2451–2457.PubMedCrossRefGoogle Scholar
  11. 11.
    Lane RE, Cowie MR, Chow AW. Prediction and prevention of sudden cardiac death in heart failure. Heart. May 2005;91(5):674–680.PubMedCrossRefGoogle Scholar
  12. 12.
    Aufderheide T. Etiology, electrophysiology, and myocaridal mechanics of pulseless elecrical activity. In: Paradis NA, Halperin HR, Nowak RM, eds. Cardiac Arrest: The Science and Practice of Resuscitation Medicine. Baltimore, MD, USA: Williams & Wilkins; 1996:320–337.Google Scholar
  13. 13.
    Waldecker B, Brugada P, Zehender M, et al. Dysrhythmias after direct-current cardioversion. Am J Cardiol. 1986;57:120–123.CrossRefGoogle Scholar
  14. 14.
    Deakin CD, Ambler JJ. Post-shock myocardial stunning: a prospective randomised double-blind comparison of monophasic and biphasic waveforms. Resuscitation. Mar 2006;68(3):329–333.PubMedCrossRefGoogle Scholar
  15. 15.
    Khan IA. Atrial stunning: basics and clinical considerations. Int J Cardiol. Dec 2003;92(2–3):113–128.PubMedCrossRefGoogle Scholar
  16. 16.
    Nichol G, Thomas E, Callaway CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 2008;300(12):1423–1431.Google Scholar
  17. 17.
    Stratton SJ, Rogers C, Brickett K, et al. Factors associated with sudden death of individuals requiring restraint for excited delirium. Am J Emerg Med. May 2001; 19(3):187–191. PubMedCrossRefGoogle Scholar
  18. 18.
    DiMaio TG, DiMaio VJM. Excited Delirium Syndrome Cause of Death and Prevention. Boca Raton: Taylor & Francis; 2006. Google Scholar
  19. 19.
    Paredes VL, Rea TD, Eisenberg MS, et al. Out-of-hospital care of critical drug overdoses involving cardiac arrest. Acad Emerg Med. Jan 2004;11(1):71–74. PubMedGoogle Scholar
  20. 20.
    Park KS, Korn CS, Henderson SO. Agitated delirium and sudden death: two case reports. Prehosp Emerg Care. Apr–Jun 2001;5(2):214–216. PubMedCrossRefGoogle Scholar
  21. 21.
    Swerdlow C, Kroll M, Williams H, et al. Presenting rhythm in sudden custodial deaths after use of TASER® electronic control device. Heart Rhythm May 2008;5(5):S44. CrossRefGoogle Scholar
  22. 22.
    Orias O, Brooks CM, Suckling EE, et al. Excitability of the mammalian ventricle throughout the cardiac cycle. AJP. 1950;163:272–282.Google Scholar
  23. 23.
    Wikswo JP, Jr., Wisialowski TA, Altemeier WA, et al. Virtual cathode effects during stimulation of cardiac muscle: Two-dimensional in vivo experiments. Circ Res. 1991;68:513–530.Google Scholar
  24. 24.
    Fozzard HA, Arnsdorf MF. Cardiac Electrophysiology. In: Fozzard HA, Haber E, Jennings RB, et al. eds. The Heart and Cardiovascular Systems: Scientific Foundations. Second Edition ed. New York, NY, USA: Raven Press; 1992.Google Scholar
  25. 25.
    Pearce JA, Bourland JD, Neilsen W, et al. Myocardial stimulation with ultrashort duration current pulses. Pacing Clin Electrophysiol. Jan 1982;5(1):52–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Fozzard HA, Schoenberg M. Strength-duration curves in cardiac Purkinje fibres: Effects of liminal length and charge distribution. J Physiol. 1972;226:593–618.Google Scholar
  27. 27.
    Smyth NP, Tarjan PP, Chernoff E, et al. The significance of electrode surface area and stimulating thresholds in permanent cardiac pacing. J Thorac Cardiovasc Surg. Apr 1976;71(4):559–565.PubMedGoogle Scholar
  28. 28.
    Zierhofer CM. Analysis of a linear model for electrical stimulation of axons--critical remarks on the “activating function concept”. IEEE Trans Biomed Eng. Feb 2001;48(2):173–184.PubMedCrossRefGoogle Scholar
  29. 29.
    Weiss G. Sur la possibilite de rendre comparables entre eux les apareils servant a l'excitation. Arch Ital de Biol. 1901;35:413–446.Google Scholar
  30. 30.
    Lapicque L. Definition experimentale de l'excitation. Comptes Rendus Acad Sci Paris. 1909;67(2):280–283.Google Scholar
  31. 31.
    Blair HA. On the intensity-time relations for stimulation by electric currents. II. J Gen Physiol. 1932;15:731–755.Google Scholar
  32. 32.
    Irnich W. The fundamental law of electrostimulation and its application to defibrillation. Pacing Clin Electrophysiol. 1990;13:1433–1447.PubMedGoogle Scholar
  33. 33.
    Kroll MW. A minimal model of the monophasic defibrillation pulse. Pacing Clin Electrophysiol. Apr 1993;16(4 Pt 1):769–777.PubMedCrossRefGoogle Scholar
  34. 34.
    Walcott GP, Walker RG, Cates AW, et al. Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation. J Cardiovasc Electrophysiol. Sep 1995;6(9):737–750.PubMedCrossRefGoogle Scholar
  35. 35.
    Luck JC, Grubb BP, Markel ML. Description of the strength-interval relation with external noninvasive pacing. Pacing Clin Electrophysiol. 1990;13:2031–2037.PubMedGoogle Scholar
  36. 36.
    Prochaczek F, Galecka J. The effect of suppression of the distortion artifact during transcutaneous pacing on the shape of the QRS complex. Pacing Clin Electrophysiol. 1990;13:2022–2025.PubMedGoogle Scholar
  37. 37.
    Altamura G, Toscano S, Bianconi L, et al. Transcutaneous cardiac pacing: Evaluation of cardiac activation. PACE. 1990;13:2017–2021.PubMedGoogle Scholar
  38. 38.
    Klein LS, Miles WM, Heger JJ, et al. Transcutaneous pacing: Patient tolerance, strength-interval relations and feasibility for programmed electrical stimulation. Am J Cardiol. 1988;62(16):1126–1129.CrossRefGoogle Scholar
  39. 39.
    Kelly JS, Royster RL, Angert KC, et al. Efficacy of noninvasive transcutaneous cardiac pacing patients undergoing cardiac surgery. Anesthesiology. May 1989;70(5):747–751.PubMedCrossRefGoogle Scholar
  40. 40.
    Kemnitz J, Winter J, Vester EG, et al. Transcutaneous cardiac pacing in patients with automatic implantable cardioverter defibrillators and epicardial patch electrodes. Anesthesiology. Aug 1992;77(2):258–262.PubMedCrossRefGoogle Scholar
  41. 41.
    Falk RH, Battinelli NJ. External cardiac pacing using low impedance electrodes suitable for defibrillation: A comparative blinded study. J Am Coll Cardiol. 1993;22:1354–1358.PubMedGoogle Scholar
  42. 42.
    McEneaney DJ, Cochrane DJ, Anderson JA, et al. Ventricular pacing with a novel gastroesophageal electrode: a comparison with external pacing. Am Heart J. Jun 1997;133(6):674–680.PubMedCrossRefGoogle Scholar
  43. 43.
    Prochaczek FB, Mugica J. Is the new electrode configuration a break point in transcutaneous cardiac pacing tolerance? European J Biomed Tech. 1994;16(3/4):98–101. Google Scholar
  44. 44.
    Estes NA, 3rd, Deering TF, Manolis AS, et al. External cardiac programmed stimulation for noninvasive termination of sustained supraventricular and ventricular tachycardia. Am J Cardiol. Jan 15 1989;63(3):177–183.PubMedCrossRefGoogle Scholar
  45. 45.
    Geddes LA, Voorhees WD, 3rd, Babbs CF, et al. Precordial pacing windows. Pacing Clin Electrophysiol. Sep 1984;7(5):806–812.PubMedCrossRefGoogle Scholar
  46. 46.
    Sweeney JD. Skeletal muscle response to electrical stimulation. In: Reilly JP, ed. Electrical Stimulation and Electropathology. New York, NY: Cambridge University Press; 1992:285–327.Google Scholar
  47. 47.
    Voorhees CR, Voorhees WD, 3rd, Geddes LA, et al. The chronaxie for myocardium and motor nerve in the dog with chest-surface electrodes. IEEE Trans Biomed Eng. Jun 1992;39(6):624–628.PubMedCrossRefGoogle Scholar
  48. 48.
    Lerman BB, Deale OC. Relation between transcardiac and transthoracic current during defibrillation in humans. CIRCRES. 1990;67:1420–1426.Google Scholar
  49. 49.
    Camacho MA, Lehr JL, Eisenberg SR. A three-dimensional finite element model of human transthoracic defibrillation: Paddle placement and size. IEEE Trans Biomed Eng. 1995;42(6):572–578.PubMedCrossRefGoogle Scholar
  50. 50.
    Cranefield PF, Hoffman BF, Siebens AA. Anodal excitation of cardiac muscle. Am J Physiol. 1957;190:383–390.Google Scholar
  51. 51.
    Voorhees WD, III, Foster KS, Geddes LA, et al. Safety factor for precordial pacing: minimum current thresholds for pacing and for ventricular fibrillation by vulnerable-period stimulation. Pacing Clin Electrophysiol. 1984;7:356–360.PubMedGoogle Scholar
  52. 52.
    McQuillen EN, McQuillen JB. Pain and suffering … and unconsciousness. Am J Forensic Med Pathol. Jun 1994;15(2):174–179.PubMedCrossRefGoogle Scholar
  53. 53.
    Morady F, Shapiro W, Shen E, et al. Programmed ventricular stimulation in patients without spontaneous ventricular tachycardia. Am Heart J. May 1984;107(5 Pt 1):875–882.PubMedCrossRefGoogle Scholar
  54. 54.
    Brugada PW, Wellens HJJ. Programmed electrical stimulation of the human heart. In: Josephson MEW, Wellens HJJ, ed. Tachycardias-Mechanisms, Diagnosis, Treatment. Philadelphia, PA: Lea & Febiger; 1984:61–89. Google Scholar
  55. 55.
    Wit AL, Janse MJ. Ventricular arrhythmias in the acute phase of myocardial ischemia and infarction. The Ventricular Arrhythmias of Ischemia and Infarction: Electrophysiological Mechanisms. Mount Kisco: Futura Publishing Company, Inc.; 1993:161–266.Google Scholar
  56. 56.
    Van Fleet JF, Tacker WA. Cardiac damage from transchest and ICD defibrillator shocks. In: Tacker WA, Jr., ed. Defibrillation of the Heart: ICDs, AEDs, and Manual. St. Louis: Mosby-Year Book, Inc; 1994:259–298.Google Scholar
  57. 57.
    Tung L. Electrical injury to heart muscle cells. In: Lee RC, Cravalho EG, Burke JF, eds. Electrical Trauma: The Pathophysiology, Manifestation, and Clinical Management. Cambridge: University of Cambridge Press; 1992:361–400.CrossRefGoogle Scholar
  58. 58.
    Lee RC, Zhang D, Hannig J. Biophysical injury mechanisms in electrical shock trauma. Annu Rev Biomed Eng. 2000;2:477–509.PubMedCrossRefGoogle Scholar
  59. 59.
    Walcott GP, Killingsworth CR, Ideker RE. Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction? Resuscitation. Oct 2003;59(1):59–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Ideker RE, Dosdall DJ. Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest? Am J Forensic Med and Path. 2007;28(4):195–201.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Medicine, Biomedical Engineering, and PhysiologyUniversity of Alabama-BirminghamBirminghamUSA

Personalised recommendations