Advertisement

CEW Research Models: Animal and Human Studies

  • Theodore C. Chan
  • Gary M. Vilke
Chapter

Research on CEWs has involved both animals and humans. Multiple investigators have conducted extensive, detailed and complex experimental studies on animal models, as well as human volunteer subjects to measure, monitor, and determine the physiologic effects of CEWs. The findings and results of these animal and human experimental studies have varied and, as a result, the conclusions drawn by investigators as well as other experts have been inconsistent and at times in wide disagreement.

Keywords

Ventricular Fibrillation Human Volunteer Cardiac Injury Metabolic Physiology Ventricular Fibrillation Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pippin JJ. Taser research in pigs not helpful. J Am Coll Cardiol. 2007;49(6):731–732; author reply 732–733.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferris LP, King BG, Spence PW, et al. Effect of electric shock on the heart. Electr Eng. 1936;55:498–515.Google Scholar
  3. 3.
    Schnabel PA, Richter J, Schmiedl A, et al. Patterns of structural deterioration due to ischemia in Purkinje fibres and different layers of the working myocardium. Thorac Cardiovasc Surg. 1991;39(4):174–182.PubMedCrossRefGoogle Scholar
  4. 4.
    Howe BB, Fehn PA, Pensinger RR. Comparative anatomical studies of the coronary arteries of canine and porcine hearts. I. Free ventricular walls. Acta Anat (Basel). 1968;71(1):13–21.CrossRefGoogle Scholar
  5. 5.
    Allison JS, Qin H, Dosdall DJ, et al. The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol. 2007;18(12):1306–1312.PubMedCrossRefGoogle Scholar
  6. 6.
    Pak HN, Kim YH, Lim HE, et al. Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. J Cardiovasc Electrophysiol. 2006;17(7):777–783.PubMedCrossRefGoogle Scholar
  7. 7.
    Li GR, Du XL, Siow YL, et al. Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res. 2003;58(1):89–98.PubMedCrossRefGoogle Scholar
  8. 8.
    Dalziel CF, Lee WR. Reevaluation of lethal electric currents. IEEE Trans Ind Gen Appl. 1968;IGA-4(5):467–476.CrossRefGoogle Scholar
  9. 9.
    Geddes LA, Cabler P, Moore AG, et al. Threshold 60-Hz current required for ventricular fibrillation in subjects of various body weights. IEEE Trans Biomed Eng. 1973;20(6):465–468.PubMedCrossRefGoogle Scholar
  10. 10.
    McDaniel WC, Stratbucker RA, Nerheim M, et al. Cardiac safety of neuromuscular incapacitating defensive devices. Pacing Clin Electrophysiol. 2005;28 Suppl 1:S284–287.PubMedCrossRefGoogle Scholar
  11. 11.
    Lakkireddy D, Wallick D, Ryschon K, et al. Effects of cocaine intoxication on the threshold for stun gun induction of ventricular fibrillation. J Am Coll Cardiol. 2006;48(4):805–811.PubMedCrossRefGoogle Scholar
  12. 12.
    Dorian P, Nanthakumar K. Taser research in pigs not helpful (reply letter). J Am Coll Cardiol. 2007;49(6):732.CrossRefGoogle Scholar
  13. 13.
    Tchou P. Taser research in pigs not helpful (reply letter). J Am Coll Cardiol. 2007;49(6):733.CrossRefGoogle Scholar
  14. 14.
    Wu JY, Sun H, O'Rourke AP, et al. Taser dart-to-heart distance that causes ventricular fibrillation in pigs. IEEE Trans Biomed Eng. 2007;54(3):503–508.PubMedCrossRefGoogle Scholar
  15. 15.
    Nanthakumar K, Billingsley IM, Masse S, et al. Cardiac electrophysiological consequences of neuromuscular incapacitating device discharges. J Am Coll Cardiol. 2006;48(4):798–804.PubMedCrossRefGoogle Scholar
  16. 16.
    McDaniel W, Stratbucker R, Smith R. Surface application of TASER stun guns does not cause ventricular fibrillation in canines. Paper presented at: Proc Annu Int Conf IEEE Eng Med Biol Soc. 2000.Google Scholar
  17. 17.
    Hughes E, Kennett M, Murray W, et al. Electro-Muscular Disruption (EMD) Bioeffects: A Study on the Effects a Continuous Application of the TASER@X26 Waveform on Swine. Philadelphia, PA: Penn State University; 2007.Google Scholar
  18. 18.
    Kroll MW, Calkins H, Luceri RM. Electronic control devices and the clinical milieu. J Am Coll Cardiol. 2007;49(6):732; author reply 732–733.PubMedCrossRefGoogle Scholar
  19. 19.
    TASER_International. Field Use and Statistics. Available at: http://www.taser.com/research/statistics/Pages/FieldUseandStatistics.aspx
  20. 20.
    Pound P, Ebrahim S, Sandercock P, et al. Where is the evidence that animal research benefits humans? Bmj. 2004;328(7438):514–517.PubMedCrossRefGoogle Scholar
  21. 21.
    Jauchem JR, Sherry CJ, Fines DA, et al. Acidosis, lactate, electrolytes, muscle enzymes, and other factors in the blood of Sus scrofa following repeated TASER exposures. Forensic Sci Int. 2006;161(1):20–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu J, Sun H, O'Rourke A, et al. Taser blunt dart-to-heart distance causing ventricular fibrillation in pigs. IEEE Trans Biomed Eng. 2007 Mar;54(3):503–508.Google Scholar
  23. 23.
    Tisdale JE, Shimoyama H, Sabbah HN, et al. The effect of cocaine on Ventricular fibrillation threshold in the normal canine heart. Pharmacotherapy. 1996;16(3):429–437.PubMedGoogle Scholar
  24. 24.
    Ho JD, Miner JR, Lakireddy DR, et al. Cardiovascular and physiologic effects of conducted electrical weapon discharge in resting adults. Acad Emerg Med. 2006;13(6): 589–595.PubMedCrossRefGoogle Scholar
  25. 25.
    Vilke GM, Sloane CM, Bouton KD, et al. Physiological effects of a conducted electrical weapon on human subjects. Ann Emerg Med. 2007;50(5):569–575.PubMedCrossRefGoogle Scholar
  26. 26.
    Ho JD, Dawes DM, Bultman LL, et al. Respiratory effect of prolonged electrical weapon application on human volunteers. Acad Emerg Med. 2007;14:197–201.PubMedCrossRefGoogle Scholar
  27. 27.
    Ho J. Physiologic effects of prolonged conducted electrical weapon discharge on acidotic adults. Acad Emerg Med. 2007;14(5 Suppl. 1):s63.CrossRefGoogle Scholar
  28. 28.
    Ho J. Absence of electrocardiographic change following prolonged application of a conducted electrical weapon in physically exhausted adults. Acad Emerg Med 2007;14(5 Suppl. 1):s128–s129.CrossRefGoogle Scholar
  29. 29.
    Moscati R, Ho J, Dawes D, et al. Physiologic effects of prolonged conducted electrical weapon discharge on intoxicated adults. Acad Emerg Med 2007;14(5 Suppl. 1):s63–s64.CrossRefGoogle Scholar
  30. 30.
    Sloane CM, Chan TC, Levine SD, et al. serum troponin i measurement of subjects exposed to the Taser X-26(R). J Emerg Med. 2008;35(1):29–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Dawes DM, Ho JD, Johnson MA, et al. 15-second conducted electrical weapon exposure does not cause core temperature elevation in non-environmentally stressed resting adults. Forensic Sci Int. 2008;176(2–3):253–257.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Emergency MedicineUniversity of California, San Diego Medical CenterSan Diego

Personalised recommendations