Stimulant Abuse and Sudden Cardiac Death

  • Steven B. Karch

Chronic illegal stimulant usage alters the structure of the heart. Most of these alterations are well recognized, but the underlying etiology of many still remains obscure. Cocaine was the first local anesthetic and, like all local anesthetics, it blocks sodium channels in the heart [1], but it also has the potential ability to block potassium channels as well. Blockade of potassium channels disrupts the normal dispersion of electrical signals in the heart. Methamphetamine produces many of the same changes, but does not directly interact with any of the heart’s ion channels.


Potassium Channel Sudden Cardiac Death Coronary Flow Reserve Structural Heart Disease Myocardial Hypertrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ma YL, Peters NS, Henry JA. Alpha 1-acid glycoprotein reverses cocaine-induced sodium channel blockade in cardiac myocytes. Toxicology 2006; 220:46–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Karle CA, Kiehn J. An ion channel 'addicted' to ether, alcohol and cocaine: the HERG potassium channel. Cardiovasc Res 2002; 53:6–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Karch SB, Green GS, Young S. Myocardial hypertrophy and coronary artery disease in male cocaine users. J Forensic Sci 1995; 40:591–5.PubMedGoogle Scholar
  4. 4.
    Karch SB, Stephens BG, Ho CH. Methamphetamine-related deaths in San Francisco: demographic, pathologic, and toxicologic profiles. J Forensic Sci 1999; 44:359–68.PubMedGoogle Scholar
  5. 5.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet 2006; 367:356–67.PubMedCrossRefGoogle Scholar
  6. 6.
    Shah M, Akar FG, Tomaselli GF. Molecular basis of arrhythmias. Circulation 2005; 112:2517–29.PubMedCrossRefGoogle Scholar
  7. 7.
    de Simone G. Concentric or eccentric hypertrophy: how clinically relevant is the difference? Hypertension 2004; 43:714–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB. Contemporary definitions and classification of the cardiomyopathies: an American heart association scientific statement from the council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113:1807–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Abbate A, Scarpa S, Santini D, Palleiro J, Vasaturo F, Miller J, Morales C, Vetrovec GW, Baldi A. Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. Int J Cardiol 2006; 111:371–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Lafontant PJ, Field LJ. The cardiomyocyte cell cycle. Novartis Found Symp 2006; 274:196–207; discussion 208–13, 272–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999; 79:215-62.PubMedGoogle Scholar
  12. 12.
    Henning RJ, Cuevas J. Cocaine activates calcium/calmodulin kinase II and causes cardiomyocyte hypertrophy. J Cardiovasc Pharmacol 2006; 48:802–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Henning RJ, Silva J, Reddy V, Kamat S, Morgan MB, Li YX, Chiou S. Cocaine increases beta-myosin heavy-chain protein expression in cardiac myocytes. J Cardiovasc Pharmacol Ther 2000; 5:313–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Wijetunga M, Seto T, Lindsay J, Schatz I. Crystal methamphetamine-associated cardiomyopathy: tip of the iceberg? J Toxicol Clin Toxicol 2003; 41:981–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Arora S, Alfayoumi F, Srinivasan V. Transient left ventricular apical ballooning after cocaine use: is catecholamine cardiotoxicity the pathologic link? Mayo Clin Proc 2006; 81:829–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Furukawa T, Kurokawa J. Potassium channel remodeling in cardiac hypertrophy. J Mol Cell Cardiol 2006; 41:753–61.PubMedCrossRefGoogle Scholar
  17. 17.
    Guo J, Gang H, Zhang S. Molecular determinants of cocaine block of human ether-a-go-go-related gene potassium channels. J Pharmacol Exp Ther 2006; 317:865–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu Y, Temple J, Zhang R, Dzhura I, Zhang W, Trimble R, Roden DM, Passier R, Olson EN, Colbran RJ, Anderson ME. Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation 2002; 106:1288–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Kirchhof P, Fabritz L, Kilic A, Begrow F, Breithardt G, Kuhn M. Ventricular arrhythmias, increased cardiac calmodulin kinase II expression, and altered repolarization kinetics in ANP receptor deficient mice. J Mol Cell Cardiol 2004; 36:691–700.PubMedCrossRefGoogle Scholar
  20. 20.
    Ouchi Y, Kubota Y, Ito C. Serial analysis of gene expression in methamphetamine- and phencyclidine-treated rodent cerebral cortices: are there common mechanisms? Ann N Y Acad Sci 2004; 1025:57–61.PubMedCrossRefGoogle Scholar
  21. 21.
    McKinsey TA. Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovasc Res 2007; 73:667–77.PubMedCrossRefGoogle Scholar
  22. 22.
    Kannel WB, Abbott RD. A prognostic comparison of asymptomatic left ventricular hypertrophy and unrecognized myocardial infarction: the Framingham Study. Am Heart J 1986; 111:391–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol 1998; 32:1454–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Karch SB, Stephens BG. Drug abusers who die during arrest or in custody. J R Soc Med 1999; 92:110–3.PubMedGoogle Scholar
  25. 25.
    Patel MM, Belson MG, Wright D, Lu H, Heninger M, Miller MA. Methylenedioxymethamphetamine (ecstasy)-related myocardial hypertrophy: an autopsy study. Resuscitation 2005; 66:197–202.PubMedCrossRefGoogle Scholar
  26. 26.
    Yarom R, Levy E, Horowitz M. Myocardial pathology in rats exposed to prolonged environmental heat. Cardiovasc Res 1990; 24:982–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Mosseri M, Yarom R, Gotsman MS, Hasin Y. Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation 1986; 74:964–72.PubMedGoogle Scholar
  28. 28.
    Mosseri M, Schaper J, Admon D, Hasin Y, Gotsman MS, Sapoznikov D, Pickering JG, Yarom R. Coronary capillaries in patients with congestive cardiomyopathy or angina pectoris with patent main coronary arteries. Ultrastructural morphometry of endomyocardial biopsy samples. Circulation 1991; 84:203–10.PubMedGoogle Scholar
  29. 29.
    Bishop AH, Samady H. Fractional flow reserve: critical review of an important physiologic adjunct to angiography. Am Heart J 2004; 147:792–802.PubMedCrossRefGoogle Scholar
  30. 30.
    Karch SB, Wetli CV. Agitated delirium versus positional asphyxia. Ann Emerg Med 1995; 26:760–1.PubMedCrossRefGoogle Scholar
  31. 31.
    Anderson KP. Sympathetic nervous system activity and ventricular tachyarrhythmias: recent advances. Ann Noninvasive Electrocardiol 2003; 8:75–89.PubMedCrossRefGoogle Scholar
  32. 32.
    Anderson ME. QT interval prolongation and arrhythmia: an unbreakable connection? J Intern Med 2006; 259:81–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Antzelevitch C. Cardiac repolarization. The long and short of it. Europace 2005;7 Suppl 2:3–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Kang J, Reynolds WP, Chen XL, Ji J, Wang H, Rampe DE. Mechanisms underlying the QT interval-prolonging effects of sevoflurane and its interactions with other QT-prolonging drugs. Anesthesiology 2006; 104:1015–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Schillaci G, Pirro M, Ronti T, Gemelli F, Pucci G, Innocente S, Porcellati C, Mannarino E. Prognostic impact of prolonged ventricular repolarization in hypertension. Arch Intern Med 2006; 166:909–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, Gerstenblith G, Weiss RG, Marban E, Tomaselli GF, Lima JA, Wu KC. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 2007; 115:2006–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Burns J, Sivananthan MU, Ball SG, Mackintosh AF, Mary DA, Greenwood JP. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 2007; 115:1999–2005.PubMedCrossRefGoogle Scholar
  38. 38.
    Witchel HJ. The hERG potassium channel as a therapeutic target. Expert Opin Ther Targets 2007; 11:321–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Gunne LM, Jonsson J. Effects of cocaine administration on brain, adrenal and urinary adrenaline and noradrenaline in rats. Psychopharmacologia 1964; 6:125–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Chiueh CC, Kopin IJ. Radioenzymatic paper-chromatographic assay for dopamine and norepinephrine in cerebroventricular cisternal perfusate of cat following administration of cocaine or d-amphetamine. J Neurochem 1978; 31:561–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Dixon WR, Chang AP, Machado J, Lau B, Thompson A, Gallagher S, Sanders W. Effect of intravenous infusion and oral self-administration of cocaine on plasma and adrenal catecholamine levels and cardiovascular parameters in the conscious rat. NIDA Res Monogr 1989; 95:335–6.PubMedGoogle Scholar
  42. 42.
    Kiritsy-Roy JA, Halter JB, Gordon SM, Smith MJ, Terry LC. Role of the central nervous system in hemodynamic and sympathoadrenal responses to cocaine in rats. J Pharmacol Exp Ther 1990; 255:154–60.PubMedGoogle Scholar
  43. 43.
    Mahlakaarto J, Ruskoaho H, Huttunen P, MacDonald E, Pasanen M. Norcocaine is a potent modulator of haemodynamic responses, plasma catecholamines and cardiac hormone release in conscious rats. Toxicology 1998; 128:101–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Hong K, Kusano KF, Morita H, Fujimoto Y, Nakamura K, Yamanari H, Ohe T. Involvement of Ca(2+) in antiarrhythmic effect of ischemic preconditioning in isolated rat heart. Jpn J Physiol 2000; 50:207–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Pak HN, Kim YH, Lim HE, Chou CC, Miyauchi Y, Fang YH, Sun K, Hwang C, Chen PS. Role of the posterior papillary muscle and purkinje potentials in the mechanism of ventricular fibrillation in open chest dogs and Swine: effects of catheter ablation. J Cardiovasc Electrophysiol 2006; 17:777–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Han J, Garciadejalon P, Moe GK. Adrenergic effects on ventricular vulnerability. Circ Res 1964; 14:516–24.PubMedGoogle Scholar
  47. 47.
    Stratton SJ, Rogers C, Brickett K, Gruzinski G. Factors associated with sudden death of individuals requiring restraint for excited delirium. Am J Emerg Med 2001; 19:187–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Swerdlow C, Kroll M, Williams H, Biria M, Lakkireddy D, Tchou. P. Presenting rhythm in sudden custodial deaths after use of TASER® electronic control device. Europace 2008;8 submitted.Google Scholar
  49. 49.
    Ruttenber AJ, Lawler-Heavner J, Yin M, Wetli CV, Hearn WL, Mash DC. Fatal excited delirium following cocaine use: epidemiologic findings provide new evidence for mechanisms of cocaine toxicity. J Forensic Sci 1997; 42:25–31.PubMedGoogle Scholar
  50. 50.
    Staley JK, Talbot JZ, Ciliax BJ, Miller GW, Levey AI, Kung MP, Kung HF, Mash DC. Radioligand binding and immunoautoradiographic evidence for a lack of toxicity to dopaminergic nerve terminals in human cocaine overdose victims. Brain Res 1997; 747:219–29.PubMedCrossRefGoogle Scholar
  51. 51.
    Qin Y, Ouyang Q, Pablo J, Mash DC. Cocaine abuse elevates alpha-synuclein and dopamine transporter levels in the human striatum. Neuroreport 2005; 16:1489–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Steven B. Karch

There are no affiliations available

Personalised recommendations