Electroporation of Cardiac and Nerve Cells

  • Vadim V. Fedorov
  • Leonid Livshitz
  • Geran Kostecki
  • Igor R. Efimov

It has been recently speculated that CEW pulses might cause a direct injury to cardiac or nerve cells [1,2]. This injury is referred to as electroporation and is the subject of this chapter in which we will explore this phenomenon and investigate the possibility of it occurring with CEW pulses.


Propidium Iodide Virtual Cathode Optical Recording Propidium Iodide Uptake Hyperpolarizing Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harrison, R. L., Byrne, B. J., and Tung, L. (1998). Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett. 435, 1–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosen, M. R., Brink, P. R., Cohen, I. S., and Robinson, R. B. (2004). Genes, stem cells and biological pacemakers. Cardiovasc. Res. 64, 12–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim, J. M., Lim, B. K., Ho, S. H., Yun, S. H., Shin, J. O., Park, E. M., Kim, D. K., Kim, S., and Jeon, E. S. (2006). TNFR-Fc fusion protein expressed by in vivo electroporation improves survival rates and myocardial injury in coxsackievirus induced murine myocarditis. Biochem. Biophys. Res. Commun. 344, 765–771.PubMedCrossRefGoogle Scholar
  4. 4.
    Babbs, C. F., Tacker, W. A., VanVleet, J. F., Bourland, J. D., and Geddes, L. A. (1980). Therapeutic indices for transchest defibrillator shocks: effective, damaging, and lethal electrical doses. Am. Heart J. 99, 734–738.PubMedCrossRefGoogle Scholar
  5. 5.
    Koning, G., Veefkind, A. H., and Schneider, H. (1980). Cardiac damage caused by direct application of defibrillator shocks to isolated Langendorff-perfused rabbit heart. Am. Heart J. 100, 473–482.PubMedCrossRefGoogle Scholar
  6. 6.
    Yabe, S., Smith, W. M., Daubert, J. P., Wolf, P. D., Rollins, D. L., and Ideker, R. E. (1990). Conduction disturbances caused by high current density electric fields. Circ. Res. 66, 1190–1203.PubMedGoogle Scholar
  7. 7.
    Nikolski, V. P., Sambelashvili, A. T., Krinsky, V. I., and Efimov, I. R. (2004). Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. Am. J. Physiol Heart Circ. Physiol. 286, H412–H418.PubMedCrossRefGoogle Scholar
  8. 8.
    Al-Khadra, A. S., Nikolski, V., and Efimov, I. R. (2000). The role of electroporation in defibrillation. Circ. Res. 87, 797–804.PubMedGoogle Scholar
  9. 9.
    Goldman, D. E. (1943). Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27, 37–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Chang, D. C. and Reese, T. S. (1990). Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58, 1–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Tung, L., Tovar, O., Neunlist, M., Jain, S. K., and O'Neill, R. J. (1994). Effects of strong electrical shock on cardiac muscle tissue. Ann. NY. Acad. Sci. 720, 160–75.PubMedCrossRefGoogle Scholar
  12. 12.
    O'Neill, R. J. and Tung, L. (1991). Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells. Biophys. J. 59, 1028–1039.PubMedCrossRefGoogle Scholar
  13. 13.
    Tovar, O. and Tung, L. (1992). Electroporation and recovery of cardiac cell membrane with rectangular voltage pulses. Am. J. Physiol. 263, (Pt 2):H1128–H1136.PubMedGoogle Scholar
  14. 14.
    DeBruin, K. A. and Krassowska, W. (1998). Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann. Biomed. Eng. 26, 584–596.PubMedCrossRefGoogle Scholar
  15. 15.
    Aguel, F., DeBruin, K. A., Krassowska, W., and Trayanova, N. A. (1999). Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J. Cardiovasc. Electrophysiol. 10, 701–714.PubMedCrossRefGoogle Scholar
  16. 16.
    Song, Y. M. and Ochi, R. (2002). Hyperpolarization and lysophosphatidylcholine induce inward currents and ethidium fluorescence in rabbit ventricular myocytes. J. Physiol. 545, 463–473.PubMedCrossRefGoogle Scholar
  17. 17.
    Krauthamer, V. and Jones, J. L. (1997). Calcium dynamics in cultured heart cells exposed to defibrillator-type electric shocks. Life Sci. 60, 1977–1985.PubMedCrossRefGoogle Scholar
  18. 18.
    Kodama, I., Shibata, N., Sakuma, I., Mitsui, K., Iida, M., Suzuki, R., Fukui, Y., Hosoda, S., and Toyama, J. (1994). Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am. J. Physiol. 267, H248–H258.PubMedGoogle Scholar
  19. 19.
    Neunlist, M. and Tung, L. (1997). Dose-dependent reduction of cardiac transmembrane potential by high- intensity electrical shocks. Am. J. Physiol. 273, H2817–H2825.PubMedGoogle Scholar
  20. 20.
    Gallant, P. E. and Galbraith, J. A. (1997). Axonal structure and function after axolemmal leakage in the squid giant axon. J. Neurotrauma. 14, 811–822.PubMedCrossRefGoogle Scholar
  21. 21.
    Fedorov, V. V., Hepmpill, M., Kostecki, G., and Efimov, I. R. (2008). Low electroporation threshold, conduction block, focal activity and reentrant arrhythmia in the rabbit atria: possible mechanisms of stunning and defibrillation failure. Heart Rhythm 5, 593–604.PubMedCrossRefGoogle Scholar
  22. 22.
    Gray, R. A., Huelsing, D. J., Aguel, F., and Trayanova, N. A. (2001). Effect of strength and timing of transmembrane current pulses on isolated ventricular myocytes. J. Cardiovasc. Electrophysiol. 12, 1129–1137.PubMedCrossRefGoogle Scholar
  23. 23.
    Sharma, V. and Tung, L. (2002). Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation. J. Physiol. 542, 477–492.PubMedCrossRefGoogle Scholar
  24. 24.
    Fast, V. G., Rohr, S., and Ideker, R. E. (2000). Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am. J. Physiol. Heart Circ. Physiol. 278, H688–H697.PubMedGoogle Scholar
  25. 25.
    Efimov, I. R., Cheng, Y. N., Biermann, M., Van Wagoner, D. R., Mazgalev, T., and Tchou, P. J. (1997). Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J. Cardiovasc. Electrophysiol. 8, 1031–1045.PubMedCrossRefGoogle Scholar
  26. 26.
    Fast, V. G., Sharifov, O. F., Cheek, E. R., Newton, J. C., and Ideker, R. E. (2002). Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential. Circulation 106, 1007–1014.PubMedCrossRefGoogle Scholar
  27. 27.
    Knisley, S. B., Blitchington, T. F., Hill, B. C., Grant, A. O., Smith, W. M., Pilkington, T. C., and Ideker, R. E. (1993). Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ. Res. 72, 255–270.PubMedGoogle Scholar
  28. 28.
    Windisch, H., Ahammer, H., Schaffer, P., Muller, W., and Platzer, D. (1995). Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes. Pflugers Arch 430, 508–518.PubMedCrossRefGoogle Scholar
  29. 29.
    Cheek, E. R. and Fast, V. G. (2004). Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation. Circ. Res. 94, 208–214.PubMedCrossRefGoogle Scholar
  30. 30.
    Akar, F. G., Roth, B. J., and Rosenbaum, D. S. (2001). Optical measurement of cell-to-cell coupling in intact heart using subthreshold electrical stimulation. Am. J. Physiol. Heart Circ. Physiol. 281, H533–H542.PubMedGoogle Scholar
  31. 31.
    Cheng, Y., Tchou, P. J., and Efimov, I. R. (1999). Spatio-temporal characterization of electroporation during defibrillation. Biophys. J. 76(1), A85.Google Scholar
  32. 32.
    Zhou, X., Ideker, R. E., Blitchington, T. F., Smith, W. M., and Knisley, S. B. (1995). Optical transmembrane potential measurements during defibrillation- strength shocks in perfused rabbit hearts. Circ. Res. 77, 593–602.PubMedGoogle Scholar
  33. 33.
    Neunlist, M. and Tung, L. (1995). Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys. J. 68, 2310–2322.PubMedCrossRefGoogle Scholar
  34. 34.
    Fast, V. G. and Cheek, E. R. (2002). Optical mapping of arrhythmias induced by strong electrical shocks in myocyte cultures. Circ. Res. 90, 664–670.PubMedCrossRefGoogle Scholar
  35. 35.
    Sharifov, O. F., Ideker, R. E., and Fast, V. G. (2004). High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall. Cardiovasc. Res. 64, 448–456.PubMedCrossRefGoogle Scholar
  36. 36.
    Fast, V. G., Cheek, E. R., Pollard, A. E., and Ideker, R. E. (2004). Effects of electrical shocks on Cai2+ and Vm in myocyte cultures. Circ. Res. 94, 1589–1597.PubMedCrossRefGoogle Scholar
  37. 37.
    Cheek, E. R., Ideker, R. E., and Fast, V. G. (2000). Nonlinear changes of transmembrane potential during defibrillation shocks : role of Ca(2+) current. Circ. Res. 87, 453–459.PubMedGoogle Scholar
  38. 38.
    Shirakashi, R., Kostner, C. M., Muller, K. J., Kurschner, M., Zimmermann, U., and Sukhorukov, V. L. (2002). Intracellular delivery of trehalose into Mammalian cells by electropermeabilization. J. Membr. Biol. 189, 45–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Fedorov, V. V., Constantino, J. L., Nikolski, V. P., Trayanova, N. A., and Efimov, I. R. (2007). Structural determinants of shock-induced electroporation in the ventricles. Biophys. J. [Supplement], 285A.Google Scholar
  40. 40.
    Dennis, A. J., Valentino, D. J., Walter, R. J., Nagy, K. K., Winners, J., Bokhari, F., Wiley, D. E., Joseph, K. T., and Roberts, R. R. (2007). Acute effects of TASER X26 discharges in a swine model. J. Trauma 63, 581–590.PubMedCrossRefGoogle Scholar
  41. 41.
    Walter, R. J., Dennis, A. J., Valentino, D. J., Margeta, B., Nagy, K. K., Bokhari, F., Wiley, D. E., Joseph, K. T., and Roberts, R. R. (2008). TASER X26 discharges in swine produce potentially fatal ventricular arrhythmias. Acad. Emerg. Med. 15, 66–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Livshitz, L. M., Mizrahi, J., and Einziger, P. D. (2001). Interaction of array of finite electrodes with layered biological tissue: effect of electrode size and configuration. IEEE Trans. Neural Syst. Rehabil. Eng. 9, 355–361.PubMedCrossRefGoogle Scholar
  43. 43.
    Livshitz, L. M., Mizrahi, J., and Einziger, P. D. (2001). A model of finite electrodes in layered media: an hybrid image series and moment method scheme. J Appl. Comput. Electromag. Society 16, 145–154.Google Scholar
  44. 44.
    Livshitz, L. M., Einziger, P. D., and Mizrahi, J. (2000). Current distribution in skeletal muscle activated by functional electrical stimulation: image-series formulation and isometric recruitment curve. Ann. Biomed. Eng. 28, 1218–1228.PubMedCrossRefGoogle Scholar
  45. 45.
    Lakkireddy, D., Wallick, D., Verma, A., Ryschon, K., Kowalewski, W., Wazni, O., Butany, J., Martin, D., and Tchou, P. J. (2008). Cardiac effects of electrical stun guns: does position of barbs contact make a difference? Pacing Clin. Electrophysiol. 31, 398–408.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vadim V. Fedorov
  • Leonid Livshitz
  • Geran Kostecki
  • Igor R. Efimov

There are no affiliations available

Personalised recommendations