Advertisement

Adaptive Tests for Measuring Anxiety and Depression

  • Otto B. Walter
Chapter
Part of the Statistics for Social and Behavioral Sciences book series (SSBS)

Abstract

Psychological constructs such as depression or anxiety, and health-related measures such as pain or physical functioning, can be reliably assessed today by means of standardized tests. In fact, such tests are now well established as being an important part of clinical practice. Over the last few years, the number of bio-medical publications citing the word questionnaire has risen exponentially (Figure 6.1).

Keywords

Differential Item Functioning Item Response Theory Latent Trait Item Bank Computerize Adaptive Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, J., Walter, O. B., Fliege, H., Bjorner, J. B., Kocalevent, R., Schmid, G., Klapp, B. F. & Rose, M. (2004). Validating the German computerized adaptive test for anxiety on healthy sample (A-CAT). Quality of Life Research, 13, 1515.Google Scholar
  2. Bjorner, J.B., Kosinski, M. & Ware, J. E. (2003a). The feasibility of applying item response theory to measures of migraine impact: A re-analysis of three clinical studies. Quality of Life Research, 12, 887–902.CrossRefGoogle Scholar
  3. Bjorner, J., Kosinski, M. & Ware, J. (2003b). Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the Headache Impact Test (HIT-super{ TM}). Quality of Life Research, 12, 913–933.CrossRefGoogle Scholar
  4. Bjorner, J., Kosinski, M. & Ware, J. (2003c). Using item response theory to calibrate the Headache Impact Test (HIT-6-super{ TM}) to the metric of traditional headache scales. Quality of Life Research, 12, 981–1002.CrossRefGoogle Scholar
  5. Bock, R. D. & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6, 431–444.CrossRefGoogle Scholar
  6. Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., Ader, D., Fries, J. F., Bruce B. & Rose, M. (2007). The patient-reported outcomes measurement information system (PROMIS): Progress of an NIH Roadmap Cooperative Group during its first two years. Medical Care, 45, I3–I11.CrossRefGoogle Scholar
  7. Chen, S., Hou, L. & Dodd, B. (1998). A comparison of maximum likelihood estimation and expected a posteriori estimation in CAT using the partial credit model. Educational and Psychological Measurement, 58, 569–595.CrossRefGoogle Scholar
  8. Childs, R. A., Dahlstrom, W. G., Kemp, S. M. & Panter, A. T. (2000). Item response theory in personality assessment: A demonstration using the MMPI-2 Depression scale. Assessment, 7, 37–54.CrossRefGoogle Scholar
  9. Cooke, D. J., Michie, C., Hart, S. D. & Hare, R. D. (1999). Evaluating the screening version of the Hare Psychopathy Checklist—Revised (PCL:SV): An item response theory analysis. Psychological Assessment, 11, 3–13.CrossRefGoogle Scholar
  10. Dilling, H., thinspace Mombour, W. & Schmidt, M. H. (1999). Internationale Klassifikation psychischer Störungen. ICD-10 Kapitel V(F). Klinisch-diagnostische Leitlinien (3. Aufl.). Bern: Huber.Google Scholar
  11. Drasgow, F. & Parsons, C. K. (1983). Application of unidimensional item response theory models to multidimensional data. Applied Psychological Measurement, 7, 189–199.CrossRefGoogle Scholar
  12. Embretson, S. E. (1996). The new rules of measurement. Psychological Assessment, 8, 341–349.CrossRefGoogle Scholar
  13. Embretson, S. E. & Reise, S. P. (2000). Item response theory for psychologists. Hillsdale, NJ: Erlbaum.Google Scholar
  14. Fliege, H., Becker, J., Walter, O. B., Bjorner, J. B., Klapp, B. F. & Rose, M. (2005). Development of a computer-adaptive test for depression (D-CAT). Quality of Life Research, 14, 2277–2291.CrossRefGoogle Scholar
  15. Fliege, H., Becker, J., Walter, O. B., Rose, M., Bjorner, J. & Klapp, B. F. (2009). Evaluation of a computer-adaptive test for the assessment of depression (D-CAT) in clinical application. International Journal of Methods in Psychiatric Research, 18, 23–36.CrossRefGoogle Scholar
  16. Fries, J. F., Bruce, B. & Cella, D. (2005). The promise of PROMIS: Using item response theory to improve assessment of patient-reported outcomes. Journal of Clinical and Experimental Rheumatology, 23, 33–37.Google Scholar
  17. Gardner, W., Kelleher, K. J. & Pajer, K. A. (2002). Multidimensional adaptive testing for mental health problems in primary care. Medical Care, 40, 812–823.CrossRefGoogle Scholar
  18. Häcker, H. & Stapf, K.-H. (1998). Dorsch Psychologisches Wörterbuch. Bern: Huber.Google Scholar
  19. Haley, S. M., Pengsheng N., Hambleton R. K., Slavin M. D. & Jette A. M. (2006). Computer adaptive testing improved accuracy and precision of scores over random item selection in a physical functioning item bank. Journal of Clinical Epidemiology, 59, 1174–1182.CrossRefGoogle Scholar
  20. Hambleton, R. K. (2000). Emergence of item response modeling in instrument development and data analysis. Medical Care, 38, II60–II65.CrossRefGoogle Scholar
  21. Hays, R. D., Morales, L. S. & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38, II28–II42.CrossRefGoogle Scholar
  22. Holland, P. W. & Wainer, H. (1993). Differential item functioning. Hillsdale, NJ: Erlbaum.Google Scholar
  23. Hornke, L. (1999). Benefits from computerized adaptive testing as seen in simulation studies. European Journal of Psychological Assessment, 15, 91–98.CrossRefGoogle Scholar
  24. Joiner, T., Catanzaro, S. & Laurent, J. (1996). Tripartite structure of positive and negative affect, depression, and anxiety in child and adolescent psychiatric inpatients. Journal of Abnormal Psychology, 105, 401–409.CrossRefGoogle Scholar
  25. Kim, S. & Lee, W.-C. (2006). An extension of four IRT linking methods for mixed-format tests. Journal of Educational Measurement, 43, 53–76.CrossRefMATHGoogle Scholar
  26. King, D. W., King, L. A., Fairbank, J. A. & Schlenger, W. E. (1993). Enhancing the precision of the Mississippi Scale for Combat-Related Posttraumatic Stress Disorder: An application of item response theory. Psychological Assessment, 5, 457–471.CrossRefGoogle Scholar
  27. Kolen, M. J. & Brennan, R. L. (2004). Test equating, scaling and linking (2nd ed.). New York: Springer-Verlag.MATHGoogle Scholar
  28. Krueger, R. F. & Finger, M. S. (2001). Using item response theory to understand comorbidity among anxiety and unipolar mood disorders. Psychological Assessment, 13, 140–151.CrossRefGoogle Scholar
  29. Masters, G. N. & Wright, B. D. (1997). The partial credit model. In W. J. van der Linden and R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 101–121). New York: Springer-Verlag.Google Scholar
  30. Meijer, R. R. & Nering, M. L. (1999). Computerized adaptive testing: Overview and introduction. Applied Psychological Measurement, 23, 187–194.CrossRefGoogle Scholar
  31. Mineka, S., Watson, D. & Clark, L. A. (1998). Comorbidity of anxiety and unipolar mood disorders. Annual Review of Psychology, 49, 377–412.CrossRefGoogle Scholar
  32. Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159–176.CrossRefGoogle Scholar
  33. Muraki, E. (1997). A generalized partial credit model. In W. J. van der Linden and R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 153–164) New York: Springer-Verlag.Google Scholar
  34. Muraki, E. & Bock, R. D. (1999). PARSCALE: Analysis of graded responses and ratings. Chicago: Scientific Software International, Inc.Google Scholar
  35. Muthén, L. K. & Muthén, B. O. (2004). Mplus. The Comprehensive Modeling Program for Applied Researchers. User’s Guide. Los Angeles: Muthén & Muthén.Google Scholar
  36. Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78, 691–692.CrossRefMathSciNetMATHGoogle Scholar
  37. Orlando, M. & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50–64.CrossRefGoogle Scholar
  38. Ramsay, J. O. (1995). TestGraf. A program for the graphical analysis of multiple choice test and questionnaire data. Montreal: McGill University. (http://www.psych.mcgill.ca/faculty/ ramsay/TestGraf.html)
  39. Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational Statistics, 4, 207–230.CrossRefGoogle Scholar
  40. Rose, M., Walter, O. B., Becker, J., Kocalevent, R., Fliege, H., Schmid, G., Grimm, A. & Klapp, B. F. (2004). Evaluating a computer adaptive test for depression (D-CAT) in a healthy sample. Quality of Life Research, 13, 1515.Google Scholar
  41. Rose, M., Walter, O. B., Fliege, H., Becker, J., Hess, V. & Klapp, B. F. (2002). Seven years of experience using personal digital assistants (PDA) for psychometric diagnostics in 6000 inpatients and polyclinic patients. In H.-B. Bludau & A. Koop (Eds.), Mobile computing in medicine (Lecture notes in informatics) (pp. 35–44). Bonn: Köllen.Google Scholar
  42. Samejima, F. (1993). The bias function of the maximum likelihood estimate of ability for the dichotomous response level. Psychometrika, 58, 195–209.CrossRefGoogle Scholar
  43. Santor, D. A. & Ramsay, J. O. (1998). Progress in the technology of measurement: Applications of item response models. Psychological Assessment, 10, 345–359.CrossRefGoogle Scholar
  44. Spielberger, C. D. (1972). Anxiety: Current trends in theory and research. Oxford: Academic Press.Google Scholar
  45. Swaminathan, H. & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361–370.CrossRefGoogle Scholar
  46. Walter, O. B., Becker, J., Bjorner, J. B., Fliege, H., Klapp, B. F. & Rose M. (2007). Development and evaluation of computer adaptive test for anxiety (Anxiety-CAT). Quality of Life Research, 16, 143–155.CrossRefGoogle Scholar
  47. Walter, O. B., Becker, J., Fliege, H., Bjorner, J. B., Kosinski, M., Walter, M., Klapp, B. F. & Rose, M. (2005). Entwicklungsschritte für einen computeradaptiven Test zur Erfassung von Angst (A-CAT). Diagnostica, 51, 88–100.CrossRefGoogle Scholar
  48. Wang, S. (1999). The accuracy of ability estimation methods for computerized adaptive testing using the generalized partial credit model. Unpublished doctoral dissertation, University of Pittsburgh, Pittsburg, PA.Google Scholar
  49. Wang, S. & Wang, T. (2001). Precision of Warm’s weighted likelihood estimates for a polytomous model in computerized adaptive testing. Applied Psychological Measurement, 25, 317–331.CrossRefMathSciNetMATHGoogle Scholar
  50. Ware, J. E., Bjorner, J. B. & Kosinski, M. (2000). Practical implications of item response theory and computerized adaptive testing: A brief summary of ongoing studies of widely used headache impact scales. Medical Care, 38, II73–II82.Google Scholar
  51. Ware, J. E., Kosinski, M., Bjorner, J. B., Bayliss, M. S., Batenhorst, A., Dahlöf, C. G. H., Tepper, S. & Dowson, A. (2003). Applications of computerized adaptive testing (CAT) to the assessment of headache impact. Quality of Life Research, 12, 935–952.CrossRefGoogle Scholar
  52. Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427–450.CrossRefMathSciNetGoogle Scholar
  53. Zinbarg, R. & Barlow, D. (1996). Structure of anxiety and the anxiety disorders: A hierarchical model. Journal of Abnormal Psychology, 105, 181–193.CrossRefGoogle Scholar
  54. Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (ordinal) item scores. Ottawa, ON: Directorate of Human Resources Research and Evaluation, Department of National Defence.Google Scholar
  55. Zumbo, B. D. & Hubley, A. M. (2003). Item bias. In R. Fernández-Ballesteros (Ed.), Encyclopedia of Psychological Assessment (pp. 505–509). Thousand Oaks, CA: Sage.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Otto B. Walter
    • 1
  1. 1.Institut für Psychologie, RWTH Aachen UniversityAachenGermany

Personalised recommendations