Multidimensional Adaptive Testing with Kullback–Leibler Information Item Selection

  • Joris Mulder
  • Wim J. van der Linden
Part of the Statistics for Social and Behavioral Sciences book series (SSBS)


Although multidimensional item response theory (IRT) (e.g., McDonald, 1962, 1997; Reckase, 1985, 1997; Samejima, 1974) has been available for some time, it has been applied much less frequently in adaptive testing than unidimensional IRT. The main reason for this was a lack of computational power. However, recently this condition has changed dramatically. Even for the more time-intensive Bayesian treatments of multidimensional models, regular PCs now have plenty of computational power to deal with them in a large variety of applications.


Mutual Information Posterior Distribution Item Response Theory Item Response Theory Model Computerize Adaptive Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloxom, B. & Vale, C. D. (1987, June). Multidimensional adaptive testing: An approximate procedure for updating. Paper presented at the meeting of the Psychometric Society, Montreal, Canada.Google Scholar
  2. Boughton, K. A., Yoa, L. & Lewis, D. M. (2006, April). Reporting diagnostic subscale scores for tests composed of complex structure. Paper presented at the annual meeting of the National Council on Measurement in Education, San Francisco.Google Scholar
  3. Chang, H.-H. (2004). Understanding computerized adaptive testing: From Robbins-Monro to Lord and beyond. In D. Kaplan (Ed.), Handbook of quantitative methods for the social sciences (pp. 117–133). Thousand Oaks, CA: Sage.Google Scholar
  4. Chang, H.-H. & Stout, W. (1993). The asymptotic posterior normality of the latent trait in an IRT model. Psychometrika, 58, 37–52.CrossRefMathSciNetMATHGoogle Scholar
  5. Chang, H.-H. & Ying, Z. (1996). A global information approach to computerized adaptive testing. Applied Psychological Measurement, 20, 213–229.CrossRefGoogle Scholar
  6. Cover, T. M. & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.CrossRefMATHGoogle Scholar
  7. Fan, M. & Hsu, Y. (1996, April). Multidimensional computer adaptive testing. Paper presented at the annual meeting of the American Educational Research Association, New York.Google Scholar
  8. Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (1995). Bayesian data analysis. London: Chapman & Hall.Google Scholar
  9. Glas, C. A. W. (1992). A Rasch model with a multivariate distribution of ability. In M. Wilson (Ed.), Objective measurement: Theory into practice (Vol. 1). Norwood, NJ: Ablex.Google Scholar
  10. Hambleton, R. K. & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston: Kluwer-Nijhof Publishing.Google Scholar
  11. Lehmann, E. L. & Casella, G. (1998). Theory of point estimation (2nd ed.). New York: Springer-Verlag.MATHGoogle Scholar
  12. Luecht, R. M. (1996). Multidimensional computer adaptive testing. Applied Psychological Measurement, 20, 389–404.CrossRefGoogle Scholar
  13. McDonald, R. P. (1967). Nonlinear factor analysis. Psychometric Monographs No. 15.Google Scholar
  14. McDonald, R. P. (1997). Normal-ogive multidimensional model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 258–270). New York: Springer-Verlag.Google Scholar
  15. Mulder, J. & van der Linden, W. J. (2009). Multidimensional adaptive testing with optimal design criteria for item selection. Psychometrika, 74, 273–296.CrossRefMATHGoogle Scholar
  16. Owen, R. J. (1969). A Bayesian approach to tailored testing (Research Report 69–92). Princeton, NJ: Educational Testing Service.Google Scholar
  17. Owen, R. J. (1975). A Bayesian sequential procedure for quantal response in the context of adaptive mental testing. Journal of the American Statistical Association, 70, 351–356.CrossRefMathSciNetMATHGoogle Scholar
  18. Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. Applied Psychological Measurement, 9, 401–412.CrossRefGoogle Scholar
  19. Reckase, M. D. (1997). A linear logistic multidimensional model for dichotomous items response data. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 271–286). New York: Springer-Verlag.Google Scholar
  20. Samejima, F. (1974). normal-ogive model for the continuous response level in the multidimensional latent space. Psychometrika, 39, 111–121.CrossRefMathSciNetMATHGoogle Scholar
  21. Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika, 61, 331–354.CrossRefMATHGoogle Scholar
  22. Silvey, S. D. (1980). Optimal design. London: Chapman & Hall.MATHGoogle Scholar
  23. van der Linden, W. J. (1996). Assembling tests for the measurement of multiple traits.Applied Psychological Measurement, 20, 373–388.CrossRefGoogle Scholar
  24. van der Linden, W. J. (1999). Multidimensional adaptive testing with a minimum error-variance criterion. Journal of Educational and Behavioral Statistics, 24, 398–412.Google Scholar
  25. van der Linden, W. J. (2005). Linear models for optimal test design. New York: Springer-Verlag.MATHGoogle Scholar
  26. van der Linden, W. J. & Glas, C. A. W. (2007). Statistical aspects of adaptive testing. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics (Vol. 27: Psychometrics) (pp. 801–838). Amsterdam: North-Holland.Google Scholar
  27. Veldkamp, B. P. & van der Linden, W. J. (2002). Multidimensional adaptive testing with constraints on test content. Psychometrika, 67, 575–588.CrossRefMathSciNetGoogle Scholar
  28. Weissman, A. (2007). Mutual information item selection in adaptive classification testing. Educational and Psychological Measurement, 67, 41–58CrossRefMathSciNetGoogle Scholar
  29. Yao, L. & Boughton, K. A. (2007). A multidimensional item response modeling approach for improving subscale proficiency estimation and classification. Applied Psychological Measurement, 31, 83–105.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joris Mulder
    • 1
  • Wim J. van der Linden
    • 2
  1. 1.Department of Methodology and StatisticsUtrecht UniversityUtrechtThe Netherlands
  2. 2.CTB/McGraw-HillMontereyUSA

Personalised recommendations