Skip to main content

Testlet-Based Adaptive Mastery Testing

  • Chapter
  • First Online:
Book cover Elements of Adaptive Testing

Part of the book series: Statistics for Social and Behavioral Sciences ((SSBS))

  • 3070 Accesses

Abstract

In mastery testing, the problem is to decide whether a test taker must be classified as a master or a nonmaster. The decision is based on the test taker’s observed test score. Well-known examples of mastery testing include testing for pass-fail decisions, licensure, and certification. A mastery test can have both fixed-length and variable-length forms. In a fixed-length mastery test, the performance on a fixed number of items is used for deciding on mastery or nonmastery. Over the last few decades, the fixed-length mastery problem has been studied extensively by many researchers (e.g., De Gruijter & Hambleton, 1984; van der Linden, 1990). Most of these authors derived, analytically or numerically, optimal rules by applying (empirical) Bayesian decision theory (e.g., DeGroot, 1970; Lehmann, 1986) to this problem. In the variable-length form, in addition to the action of declaring mastery or nonmastery, the action of continuing to administer items is available also (e.g., Kingsbury and Weiss, 1983; Lewis & Sheehan, 1990; Sheehan and Lewis, 1992; Spray & Reckase, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angoff, W.H. (1971). Scales, norms, and equivalent scores. In R.L.Thorndike (Ed.), Educational measurement (2nd ed., pp. 508–600). Washington, DC: American Council of Education.

    Google Scholar 

  • Birnbaum, A. (1968). Some latent trait models. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Bradlow, E. T., Wainer, H. & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.

    Article  Google Scholar 

  • Chang, H.-H. & Stout, W. F. (1993). The asymptotic posterior normality of the latent trait in an IRT model. Psychometrika, 58, 37–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Coombs, C. H., Dawes, R. M. & Tversky, A. (1970). Mathematical psychology: An elementary introduction. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • DeGroot, M. H. (1970). Optimal statistical decisions. New York: McGraw-Hill.

    MATH  Google Scholar 

  • De Gruijter, D. N. M. & Hambleton, R. K. (1984). On problems encountered using decision theory to set cutoff scores. Applied Psychological Measurement, 8, 1–8.

    Article  Google Scholar 

  • Ferguson, R. L. (1969). The development, implementation, and evaluation of a computer-assisted branched test for a program of individually prescribed instruction. Unpublished doctoral dissertation, University of Pittsburgh, Pittsburgh, PA.

    Google Scholar 

  • Glas, C. A. W., Wainer, H. & Bradlow, E. T. (2000). MML and EAP estimates for the testlet response model. In W. J. van der Linden & C. A. W.Glas (Eds.), Computer adaptive testing: Theory and practice (pp. 271–287). Boston: Kluwer-Nijhoff Publishing.

    Google Scholar 

  • Haladyna, T. M. (1994). Developing and validating multiple- choice test items. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Huynh, H. (1980). A nonrandomized minimax solution for passing scores in the binomial error model. Psychometrika, 45, 167–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Keeney, D. & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value trade-offs. New York: John Wiley and Sons.

    Google Scholar 

  • Kingsbury, G. G. & Weiss, D. J. (1983). A comparison of IRT-based adaptive mastery testing and a sequential mastery testing procedure. In D. J. Weiss (Ed.): New horizons in testing: Latent trait test theory and computerized adaptive testing (pp. 257–283). New York: Academic Press.

    Google Scholar 

  • Kolen, M. J. & Brennan, R. L. (1995). Test equating. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Lehmann, E. L. (1986). Testing statistical hypothesis. (2nd ed.). New York: Wiley.

    Google Scholar 

  • Lewis, C. & Sheehan, K. (1990). Using Bayesian decision theory to design a computerized mastery test. Applied Psychological Measurement, 14, 367–386.

    Article  Google Scholar 

  • Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Luce, R. D. & Raiffa, H. (1957). Games and decisions. New York: John Wiley and Sons.

    MATH  Google Scholar 

  • McDonald, R. P. (1997). Normal-ogive multidimensional model. In W. J. van der Linden and R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 257–269). New York: Springer-Verlag.

    Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  • Reckase, M. D. (1983). A procedure for decision making using tailored testing. In D. J. Weiss (Ed.), New horizons in testing: Latent trait test theory and computerized adaptive testing (pp. 237–255). New York: Academic Press.

    Google Scholar 

  • Reckase, M. D. (1997). A linear logistic multidimensional model for dichotomous item response data. In W. J. van der Linden and R.K. Hambleton (Eds.), Handbook of modern item response theory. (pp. 271–286). New York: Springer-Verlag.

    Google Scholar 

  • Sheehan, K. & Lewis, C. (1992). Computerized mastery testing with non-equivalent testlets. Applied Psychological Measurement, 16, 65–76.

    Article  Google Scholar 

  • Sireci, S. G., Wainer, H. & Thissen, D. (1991). On the reliability of testlet-based tests. Journal of Educational Measurement, 28, 237–247.

    Article  Google Scholar 

  • Smith, R. L. & Lewis, C. (1995). A Bayesian computerized mastery model with multiple cut scores. Paper presented at the annual meeting of the National Council on Measurement in Education, San Francisco.

    Google Scholar 

  • Spray, J. A. & Reckase, M. D. (1996). Comparison of SPRT and sequential Bayes procedures for classifying examinees into two categories using a computerized test. Journal of Educational and Behavioral Statistics, 21, 405–414.

    Google Scholar 

  • van der Linden, W. J. (1981). Decision models for use with criterion-referenced tests. Applied Psychological Measurement, 4, 469–492.

    Article  Google Scholar 

  • van der Linden, W. J. (1990). Applications of decision theory to test-based decision making. In R. K. Hambleton & J. N. Zaal (Eds.), New developments in testing: Theory and applications (pp. 129–155). Boston: Kluwer-Nijhof Publishing.

    Google Scholar 

  • van der Linden, W. J. (1998). Bayesian item selection criteria for adaptive testing. Psychometrika, 63, 201–216.

    Article  MATH  MathSciNet  Google Scholar 

  • van der Linden, W. J. & Mellenbergh, G. J. (1977). Optimal cutting scores using a linear loss function. Applied Psychological Measurement, 1, 593–599.

    Article  Google Scholar 

  • van der Linden, W. J. & Vos, H. J. (1996). A compensatory approach to optimal selection with mastery scores. Psychometrika, 61, 155–172.

    Article  MATH  MathSciNet  Google Scholar 

  • Verhelst, N.D., Glas, C. A. W. & van der Sluis, A. (1984). Estimation problems in the Rasch model: The basic symmetric functions. Computational Statistics Quarterly, 1, 245–262.

    MathSciNet  Google Scholar 

  • Vos, H. J. (1997a). Simultaneous optimization of quota-restricted selection decisions with mastery scores. British Journal of Mathematical and Statistical Psychology, 50, 105–125.

    MATH  Google Scholar 

  • Vos, H. J. (1997b). A simultaneous approach to optimizing treatment assignments with mastery scores. Multivariate Behavioral Research, 32, 403–433.

    Article  Google Scholar 

  • Vos, H. J. (1999). Applications of Bayesian decision theory to sequential mastery testing. Journal of Educational and Behavioral Statistics, 24, 271–292.

    Google Scholar 

  • Wainer, H. (1995). Precision and differential item functioning on a testlet-based test: The 1991 Law School Admissions Test as an example. Applied Measurement in Education, 8, 157–187.

    Article  Google Scholar 

  • Wainer, H., Bradlow, E. T. & Du, Z. (2000). Testlet response theory: An analog for the 3PL model useful in testlet-based adaptive testing. In W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 245–270). Boston: Kluwer-Nijhof Publishing.

    Google Scholar 

  • Wainer, H. & Thissen, D. (1996). How is reliability related to the quality of test scores? What is the effect of local dependence on reliability? Educational Measurement: Issues and Practice, 15, 22–29.

    Article  Google Scholar 

  • Wald, A. (1947). Sequential analysis. New York: Wiley.

    MATH  Google Scholar 

  • Weiss, D. J. & Kingsbury, G. G. (1984). Application of computerized adaptive testing to educational problems. Journal of Educational Measurement, 21, 361–375.

    Article  Google Scholar 

  • Yen, W. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Educational Measurement, 30, 187–213.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vos, H.J., Glas, C.A.W. (2009). Testlet-Based Adaptive Mastery Testing. In: van der Linden, W., Glas, C. (eds) Elements of Adaptive Testing. Statistics for Social and Behavioral Sciences. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85461-8_20

Download citation

Publish with us

Policies and ethics