Skip to main content

Estimation of the Parameters in an Item-Cloning Model for Adaptive Testing

  • Chapter
  • First Online:
Elements of Adaptive Testing

Abstract

Item response theory (IRT) models with random person parameters have become a common choice among practitioners in the field of educational and psychological measurement. Though initially the choice for such models was motivated by an attempt to get rid of the statistical problems inherent in the incidental nature of the person parameters (Bock & Lieberman, 1970), the insight soon emerged that such models more adequately represent cases where the focus is not on the measurement of individual persons but on the estimation of characteristics of populations. Early examples of models with random person parameters in the literature are those proposed by Andersen and Madsen (1977) and Sanathanan and Blumenthal (1978), who were interested in estimates of the mean and variance in a population of persons, and by Mislevy (1991), who provided tools for inference from a response model with a regression structure on the person parameters introduced to account for sampling persons differing background variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, W., Does, R. J. M. M., Imbos, T. & Janssen, M. P. E. (1989). A stochastic growth model applied to repeated tests of academic knowledge. Psychometrika, 54, 451–466.

    Article  MathSciNet  Google Scholar 

  • Albert, J. H. (1992). Bayesian estimation of normal-ogive item response curves using Gibbs sampling. Journal of Educational and Behavioral Statistics, 17, 251–269.

    Article  Google Scholar 

  • Andersen, E. B. & Madsen, M. (1977). Estimating the parameters of the latent population distribution. Psychometrika, 42, 357–374.

    Article  MathSciNet  MATH  Google Scholar 

  • Béguin, A. A. & Glas, C. A. W. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66, 541–562.

    Article  MathSciNet  Google Scholar 

  • Bejar, I. I. (1993). A generative approach to psychological and educational measurement. In N. Frederiksen, R. J. Mislevy & I. I. Bejar (Eds.), Test theory for a new generation of tests (pp. 323–357). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Berger, M. P. F. (1997). Optimal designs for latent variable models: A review. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 71–79). Münster, Germany: Waxmann.

    Google Scholar 

  • Bock, R. D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM-algorithm. Psychometrika, 46, 443–459.

    Article  MathSciNet  Google Scholar 

  • Bock, R. D. & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179–197.

    Article  Google Scholar 

  • Box, G. E. P. & Tiao, G. C. (1973). Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Bradlow, E. T., Wainer, H. & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.

    Article  Google Scholar 

  • de Boeck, P. (2008). Random item IRT models. Psychometrika, 73, 533–559.

    Article  MATH  Google Scholar 

  • de Jong, M. G., Steenkamp, J. B. E. M. & Fox, J. P. (2007). Relaxing measurement invariance in cross-national consumer research using a hierarchical IRT model. Journal of Consumer Research, 34, 260–278.

    Article  Google Scholar 

  • Efron, B. (1977). Discussion on maximum likelihood from incomplete data via the EM algorithm (by A. P. Demster, N. M. Laird and D. B. Rubin). Journal of the Royal Statistical Society (Series B), 39, 1–38.

    Google Scholar 

  • Fox, J. P. & Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 271–288.

    Article  MathSciNet  Google Scholar 

  • Geerlings, H., van der Linden, W. J. & Glas, C. A. W. (2009). Modeling rule-based item generation. Manuscript submitted for publication.

    Google Scholar 

  • Gelfand, A. E. & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (1995). Bayesian data analysis. London: Chapman and Hall.

    Google Scholar 

  • Glas, C. A. W. (1992). A Rasch model with a multivariate distribution of ability. In M. Wilson (Ed.), Objective measurement: Theory into practice (Vol. 1; pp. 236–258). Norwood, NJ: Ablex Publishing Corporation.

    Google Scholar 

  • Glas, C. A. W. (1998). Detection of differential item functioning using Lagrange multiplier tests. Statistica Sinica, 8, 647–667.

    MathSciNet  MATH  Google Scholar 

  • Glas, C. A. W. (2000). Item calibration and parameter drift. In W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 183–199). Boston: Kluwer-Nijhof Publishing.

    Google Scholar 

  • Glas, C. A. W. & van der Linden, W. J. (2001). Modeling variability in item parameters in item response models. (Research Rep. 01-11). Enschede, the Netherlands: University of Twente.

    Google Scholar 

  • Glas, C. A. W. & van der Linden, W. J. (2003). Computerized adaptive testing with item cloning. Applied Psychological Measurement, 27, 247–261.

    Article  MathSciNet  Google Scholar 

  • Glas, C. A. W., Wainer, H. & Bradlow, E. T. (2000). MML and EAP estimates for the testlet response model. In W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 271–287). Boston: Kluwer-Nijhof Publishing.

    Google Scholar 

  • Janssen, R., Tuerlinckx, F., Meulders, M. & de Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 285–306.

    Google Scholar 

  • Johnson, M. S. & Sinharay, S. (2005). Calibration of polytomous item families using Bayesian hierarchical modeling. Applied Psychological Measurement, 29, 369–400.

    Article  MathSciNet  Google Scholar 

  • Kiefer, J. & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics, 27, 887–906.

    Article  MathSciNet  MATH  Google Scholar 

  • Lord, F. M. & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226–233.

    MathSciNet  MATH  Google Scholar 

  • Millman, J. (1973). Passing score and test lengths for domain-referenced measures. Review of Educational Research, 43, 205–216.

    Google Scholar 

  • Millman, J. & Westman, R. S. (1989). Computer-assisted writing of achievement test items: Toward a future technology. Journal of Educational Measurement, 26, 177–190.

    Article  Google Scholar 

  • Mislevy, R. J. (1986). Bayes modal estimation in item response models. Pychometrika, 51, 177–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Mislevy, R. J. (1991). Randomization-based inferences about latent variables from complex samples. Pychometrika, 56, 177–196.

    Article  MATH  Google Scholar 

  • Neyman, J. & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.

    Article  MathSciNet  Google Scholar 

  • Patz, R. J. & Junker, B. W. (1999a). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146–178.

    Google Scholar 

  • Patz, R. J. & Junker, B. W. (1999b). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342–366.

    Google Scholar 

  • Robert, C. P. & Casella, G. (1999). Monte Carlo statistical methods. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Roid, G. & Haladyna, T. (1982). A technology for test-item writing. New York: Academic Press.

    Google Scholar 

  • Sanathanan, L. & Blumenthal, S. (1978). The logistic model and estimation of latent structure. Journal of the American Statistical Association, 73, 794–799.

    Article  MATH  Google Scholar 

  • Shi, J. Q. & Lee, S. Y. (1998). Bayesian sampling based approach for factor analysis models with continuous and polytomous data. British Journal of Mathematical and Statistical Psychology, 51, 233–252.

    Google Scholar 

  • Sinharay, S., Johnson, M. S. & Williamson, D. M. (2003). Calibrating item families and summarizing the results using family expected response functions. Journal of Educational and Behavioral Statistics, 28, 295–313.

    Article  Google Scholar 

  • Stocking, M. L. (1989). Empirical estimation errors in item response theory as a function of test properties (Research Report 89-5). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • van der Linden, W. J. (1994). Optimum design in item response theory: Test assembly and item calibration. In G. H. Fischer and D. Laming (Eds.), Contributions to mathematical psychology, psychometrics, and methodology (pp. 305–318). New York: Springer-Verlag.

    Google Scholar 

  • Wainer, H., Bradlow, E. T. & Du, Z. (2000). Testlet response theory: An analog for the 3PL model useful in testlet-based adaptive testing. In W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 245–269). Boston: Kluwer-Nijhof Publishing.

    Google Scholar 

  • Wingersky, M. S. & Lord, F. M. (1984). An investigation of methods for reducing sampling error in certain IRT procedures. Applied Psychological Measurement, 8, 347–364.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Glas, C.A.W., van der Linden, W.J., Geerlings, H. (2009). Estimation of the Parameters in an Item-Cloning Model for Adaptive Testing. In: van der Linden, W., Glas, C. (eds) Elements of Adaptive Testing. Statistics for Social and Behavioral Sciences. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85461-8_15

Download citation

Publish with us

Policies and ethics