Advertisement

Multi-Objective Control-Based Frequency Regulation

Chapter
Part of the Power Electronics and Power Systems book series (PEPS)

Load–frequency regulation systems are faced by new uncertainties in the liberalized electricity markets, and modelling of these uncertainties and dynamic behaviour is important to designing suitable controllers and providing better conditions for electricity trading. The communication delay as a significant uncertainty in the LFC synthesis/analysis can degrade the system’s performance and even cause system instability. In Chap. 5, a robust decentralized \({H}_{\infty }\)

Keywords

Power System Communication Delay Propose Control Strategy Static Output Feedback Multiplicative Uncertainty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Bevrani, Decentralized Robust Load–Frequency Control Synthesis in Restructured Power Systems, PhD Dissertation, Osaka University, 2004.Google Scholar
  2. 2.
    Khargonekar P.P. Rotea, M. A. 1991.Mixed \({\rm H}_2/{\rm H}_\infty\) control: A convex optimization approach, IEEE Trans. Autom. Control, 39, 824–837,CrossRefMathSciNetGoogle Scholar
  3. 3.
    Scherer, C. W. 1995.Multiobjective \({\rm H}_2/{\rm H}_\infty\) control, IEEE Trans. Autom. Control, 40, 1054–1062,CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Scherer, C. W. Gahinet P. Chilali, M. 1997.Multiobjective output-feedback control via LMI optimization, IEEE Trans. Autom. Control, 42, (7)896–911,CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Gahinet, P. Nemirovski, A. Laub A. J. Chilali, M. 1995.LMI Control Toolbox, The MathWorks, Natick, MA,Google Scholar
  6. 6.
    Wood A. J.Wollenberg B. F. 1984.Power Generation Operation and Control, Wiley, New York, NY,Google Scholar
  7. 7.
    Djukanovic, M. Khammash M. Vittal, V. 1999.Sequential synthesis of structured singular value based decentralized controllers in power systems, IEEE Trans. Power Syst., 4, (2)635–641,CrossRefGoogle Scholar
  8. 8.
    Rios, M. Hadjsaid, N. Feuillet R. Torres, A. 1999.Power system stability robustness evaluation by μ analysis, IEEE Trans. Power Syst., 14, (2)648–653,CrossRefGoogle Scholar
  9. 9.
    Gahinet P. Chilali, M. 1996.H∞, -design with pole placement constraints IEEE Trans. Autom. Control, 41, (3)358–367,CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Bevrani H. Hiyama, T. 2008.Robust decentralized PI-based LFC design for time-delay power systems, Energy Convers. Manage., 49, 193–204,CrossRefGoogle Scholar
  11. 11.
    Silva, G. J. Datta A. Bhattacharyya, S. P. 2005.PID Controllers for Time-Delay Systems, Birkhauser, Boston, MA,MATHGoogle Scholar
  12. 12.
    Gu, K. Kharitonov V. L. Chen, J. 2003.Stability of Time-Delay Systems, Birkhauser, Boston, MA,MATHGoogle Scholar
  13. 13.
    Mahmoud, M. S. 2000.Robust Control and Filtering for Time-Delay Systems, Marcel Dekker, New York, NY,MATHGoogle Scholar
  14. 14.
    Aweya, J. Montuno D. Y. Ouellette, M. 2004.Effects of control loop delay on the stability of a rate control algorithm, Int. J. Commun. Syst., 17, 833–850,CrossRefGoogle Scholar
  15. 15.
    Niculescu, S. I. 2001.Delay Effects on Stability – A Robust Control Approach, Springer, Berlin,MATHGoogle Scholar
  16. 16.
    Bevrani, H. Mitani Y. Tsuji, K. 2004.Robust decentralized load–frequency control using an iterative linear matrix inequalities algorithm, IEE Proc. Gener. Transm. Distrib., 150, (3)347–354,CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

    There are no affiliations available

    Personalised recommendations