PI-Based Frequency Control Design

Part of the Power Electronics and Power Systems book series (PEPS)

Most robust and optimal load–frequency control methods published in the last two decades suggest complex state-feedback or high-order dynamic controllers [1, 2, 3, 4, 5, 6, 7, 8], which are impractical for industry practices. Furthermore, some researchers have used new and untested control frameworks, which may have some difficulties in being implemented in real-world power systems. In practice, LFC systems use simple proportional–integral (PI) controllers. However, since the PI controller parameters are usually tuned based on experiences, classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance for a wide range of operating conditions and various load changes scenarios in a multi-area power system.

Recently, some control methods have been applied to the design of decentralized robust PI or low-order controllers to solve the LFC problem [9, 10, 11, 12]. A PI control design method has been reported in [9], which used a combination of \({H}_{\inf...


Dynamic Controller Static Output Feedback Static Output Feedback Control Static Output Feedback Controller Area Control Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hiyama, T. 1982.Design of decentralised load–frequency regulators for interconnected power systems, IEE Proc., 129, 17–23, Pt. C,Google Scholar
  2. 2.
    Feliachi, A. 1987.Optimal decentralized load frequency control, IEEE Trans. Power Syst., PWRS-2, 379–384,CrossRefGoogle Scholar
  3. 3.
    Liaw C. M. Chao, K. H. 1993.On the design of an optimal automatic generation controller for interconnected power systems, Int. J. Control, 58, 113–127,CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Wang, Y. Zhou R. wen, C. 1993.Robust load–frequency controller design for power systems, IEE Proc., 140, (1)11–16, Pt. C,Google Scholar
  5. 5.
    Lim, K. Y. Wang Y. Zhou, R. 1996.Robust decentralized load–frequency control of multi-area power systems, IEE Proc. Gener. Transm. Distrib., 143, (5)377–386,CrossRefGoogle Scholar
  6. 6.
    Ishi, T. Shirai G. Fujita, G. 2001.Decentralized load frequency based on H∞, control Electr. Eng. Jpn, 136, (3)28–38,CrossRefGoogle Scholar
  7. 7.
    Kazemi, M. H. Karrari M. Menhaj, M. B. 2002.Decentralized robust adaptive-output feedback controller for power system load frequency control, Electr. Eng. J., 84, 75–83,CrossRefGoogle Scholar
  8. 8.
    El-Sherbiny, M. K. El-Saady G. Yousef, A. M. 2002.Efficient fuzzy logic load–frequency controller, Energy Convers. Manage., 43, 1853–1863,CrossRefGoogle Scholar
  9. 9.
    Rerkpreedapong, D. Hasanovic A. Feliachi, A. 2003.Robust load frequency control using genetic algorithms and linear matrix inequalities, IEEE Trans. Power Syst., 18, (2)855–861,CrossRefGoogle Scholar
  10. 10.
    Bevrani, H. Mitani Y. Tsuji, K. 2004.Sequential design of decentralized load–frequency controllers using μ-synthesis and analysis, Energy Convers. Manage., 45, (6)865–881,CrossRefGoogle Scholar
  11. 11.
    Yang, T. C. Cimen H. ZHU, Q. M. 1998.Decentralised load frequency controller design based on structured singular values, IEE Proc. Gener. Transm. Distrib., 145, (1)7–14,CrossRefGoogle Scholar
  12. 12.
    Bevrani, H. 1998.Application of Kharitonov's theorem and its results in load–frequency control design, J. Electr. Sci. Technol.-BARGH (in Persian), 24, 82–95,Google Scholar
  13. 13.
    Bernstein, D. 1992.Some open problems in matrix theory arising in linear systems and control, Linear Algebra Appl., 162–164, 409–432,CrossRefGoogle Scholar
  14. 14.
    Blondel, V. Gevers M. Lindquist, A. 1995.Survey on the state of systems and control, Eur. J. Control, 1, 5–23,MATHGoogle Scholar
  15. 15.
    Syrmos, V. L. Abdallah, C. T. Dorato P. Grigoriadis, K. 1997.Static output feedback: A survey, Automatica, 33, (2)125–137,CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    F. Leibfritz, Static Output Feedback Design Problems, PhD dissertation, Trier University, 1998.Google Scholar
  17. 17.
    Prempain E. Postlethwaite, I. 2001.Static output feedback stabilization with H∞ performance for a class of plants, Syst. Control Lett., 43, 159–166,CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Iwasaki, T. Skelton R. E. Geromel, J. C. 1994.Linear quadratic suboptimal control with static output feedback, Syst. Control Lett., 23, 421–430,CrossRefMathSciNetGoogle Scholar
  19. 19.
    Gahinet P. Apkarian, P. 1994.A linear matrix inequality approach to H∞, control Int. J. Robust Nonlinear Control, 4, 421–448,CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Geromel, J. C. Souza C. C. Skeltox, R. E. 1997.Static output feedback controllers: Stability and convexity, IEEE Trans. Autom. Control, 42, 988–992,CrossRefMATHGoogle Scholar
  21. 21.
    Iwasaki T. Skelton, R. E. 1994.All controllers for the general H∞ control problem: LMI existence conditions and state space formulas, Automatica, 30, 1307–1317,CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    K. C. Goh, M. G. Safanov and G. P. Papavassilopoulos, A global optimization approach for the BMI problem, Proc IEEE CDC Conf., 2009–2014, 1994.Google Scholar
  23. 23.
    Cao, Y. Y. Sun Y. X. Mao, W. J. 1998.Static output feedback stabilization: An ILMI approach, Automatica, 34, (12)1641–1645,CrossRefMATHGoogle Scholar
  24. 24.
    Skelton, R. E. Stoustrup J. Iwasaki, T. 1994.The H∞, control problem using static output feedback Int. J. Robust Nonlinear Control, 4, 449–455,CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Gahinet, P. Nemirovski, A. Laub A. J. Chilali, M. 1995.LMI Control Toolbox, The MathWorks, Natick, MA,Google Scholar
  26. 26.
    Bevrani, H. Hiyama, T. Mitani Y. Tsuji, K. 2007.Automatic generation control: A decentralized robust approach, Intell. Autom. Soft Comput. J., 13, (3)273–287,Google Scholar
  27. 27.
    Bevrani, H. Mitani Y. Tsuji, K. 2004.Robust AGC: Traditional structure versus restructured scheme, IEE J Trans. Power Energy, 124-B, (5)751–761,CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

    There are no affiliations available

    Personalised recommendations