Advertisement

Frequency Response Characteristics and Dynamic Performance

Chapter
Part of the Power Electronics and Power Systems book series (PEPS)

This chapter describes load–frequency control characteristics and dynamic performance. Static and dynamic performances are explained, and the effects of physical constraints (generation rate, dead band, time delays, and uncertainties) on power system frequency control performance are emphasized. The impacts of power system restructuring on frequency regulation are simulated, and a dynamical model to adapt a well-tested classical load–frequency control model to the changing environment of power system operation is presented.

3.1 Frequency Response Analysis

A linear dynamical model useful for LFC analysis and synthesis was described in Chap. 2. Figure 3.1 shows the block diagram of typical control area i with n generator units in an N-multiarea power system. The blocks and parameters are defined as follows:
Δ f:

Frequency deviation

Δ P m:

Governor valve position

Δ P C:

Supplementary control action

Δ P P:

Primary control action

Δ P tie:

Net tie-line power flow

H:

Equivalent inertia constant

D:

Equi...

Keywords

Power System Control Area Frequency Control Participation Factor Bilateral Contract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson P. M. Mirheydar, M. 1990.A low-order system frequency response model, IEEE Trans. Power Syst., 5, (3)720–729,CrossRefGoogle Scholar
  2. 2.
    Nagsarkar T. K. Sukhija, M. S. 2007.Power System Analysis. Oxford University Press, New Delhi:Google Scholar
  3. 3.
    Bevrani, H. Mitani Y. Tsuji, K. 2004.Robust decentralized load–frequency control using an iterative linear matrix inequalities algorithm, IEE Proc. Gener. Transm. Distrib., 150, (3)347–354,CrossRefGoogle Scholar
  4. 4.
    IEEE System Dynamics Performance Committee Panel Session, Frequency control requirement, trends and challenges in new utility environment, Proc. IEEE PES Winter Meeting, New York, NY, 1999.Google Scholar
  5. 5.
    CIGRE SCTF 38.02.14, Analysis and modelling needs of power systems under major frequency disturbances, CIGRE Technical Brochure, No. 148, 1999.Google Scholar
  6. 6.
    H. Bevrani, Decentralized Robust Load–Frequency Control Synthesis in Restructured Power Systems. PhD dissertation, Osaka University, Japan, 2004.Google Scholar
  7. 7.
    Chritie R. D. Bose, A. 1996.Load frequency control issues in power system operation after deregulation, IEEE Trans. Power Syst., 11, (3)1191–1200,CrossRefGoogle Scholar
  8. 8.
    Delfino, B. Fornari F. Massucco, S. 2002.Load-frequency control and inadvertent interchange evaluation in restructured power systems, IEE Proc. Gener. Transm. Distrib., 149, (5)607–614,CrossRefGoogle Scholar
  9. 9.
    Kumar, J. Hoe NG. K. Sheble, G. B. 1997.AGC simulator for price-based operation, Part I: A model, IEEE Trans. Power Syst., 2, (12)527–532,CrossRefGoogle Scholar
  10. 10.
    UCPTE Doc. UCPTE rules for the co-ordination of the accounting and the organization of the load-frequency control, 1999.Google Scholar
  11. 11.
    Meliopouls, A. P. S. Cokkinides G. J. Bakirtzis, A. G. 1999.Load-frequency control service in a deregulated environment, Decision Support Syst., 24, 243–250,CrossRefGoogle Scholar
  12. 12.
    Roffel B. deBoer, W. W. 2003.Analysis of power and frequency control requirements in view of increased decentralized production and market liberalization, Control Eng. Pract., 11, 367–375,CrossRefGoogle Scholar
  13. 13.
    Bevrani, H. Mitani Y. Tsuji, K. 2004.On robust load-frequency regulation in a restructured power system, IEEJ Trans. Power Energy, 124-B, (2)190–198,CrossRefGoogle Scholar
  14. 14.
    Donde, V. Pai M. A. Hiskens, I. A. 2001.Simulation and optimization in a AGC system after deregulation, IEEE Trans. Power Syst., 16, (3)481–489,CrossRefGoogle Scholar
  15. 15.
    Elgerd O. I. Fosha, C. 1970.Optimum megawatt-frequency control of multiarea electric energy systems, IEEE Trans. Power App. Syst., PAS-89, (4)556–563,CrossRefGoogle Scholar
  16. 16.
    Fosha C. Elgerd, O. I. 1970.The megawatt-frequency control problem: A new approach via optimal control, IEEE Trans. Power App. Syst., 89, (4)563–577,CrossRefGoogle Scholar
  17. 17.
    Kumar, J. Hoe NG. K. Sheble, G. B. 1997.AGC simulator for price-based operation, Part II: Case study results, IEEE Trans. Power Syst., 2, (12)533–538,CrossRefGoogle Scholar
  18. 18.
    Bevrani, H. Mitani Y. Tsuji, K. 2004.Robust decentralized AGC in a restructured power system, Energy Convers. Manage., 45, 2297–2312,CrossRefGoogle Scholar
  19. 19.
    Bevrani, H. Mitani Y. Tsuji, K. 2004.Robust AGC: Traditional structure versus restructured scheme, IEEJ Trans. Power Energy, 124-B, (5)751–761,CrossRefGoogle Scholar
  20. 20.
    Bevrani, H. Mitani, Y. Tsuji K. Bevrani, H. 2005.Bilateral-based robust load-frequency control, Energy Convers. Manage., 46, 1129–1146,CrossRefGoogle Scholar
  21. 21.
    Jaleeli, N. Ewart D. N. Fink, L. H. 1992.Understanding automatic generation control, IEEE Trans. Power Syst., 7, (3)1106–1112,CrossRefGoogle Scholar
  22. 22.
    IEEE Committee Report, Power plant response, IEEE Trans. Power App. Syst., 86, 484–399, 1967.Google Scholar
  23. 23.
    IEEE Committee Report, Dynamic models for steam and hydro turbines in power system studies, IEEE Trans. Power App. Syst., 92, 1904–1915, 1973.Google Scholar
  24. 24.
    Kundur, P. 1994.Power System Stability and Control. McGraw-Hill, New York, NY:Google Scholar
  25. 25.
    Nanda, J. Kothari M. L. Satsangi, P. S. 1983.Automatic generation control of an interconnected hydro-thermal system in continuous and discrete modes considering generation rate constraints, IEE Proc., 130, (1)455–460, Pt D,Google Scholar
  26. 26.
    Hiyama, T. 1982.Optimisation of discrete-type load–frequency regulators considering generation-rate constraints, IEE Proc., 129, (6)285–289, Pt C,Google Scholar
  27. 27.
    Kothari, M. L. Satsangi P. S. Nanda, J. 1981.Sampled data automatic generation control of interconnected reheat thermal systems considering generation rate constraints, IEEE Trans. Power App. Syst., 100, 2334–2342,CrossRefGoogle Scholar
  28. 28.
    Concordia, C. Kirchmayer L. K. Szymanski, E. A. 1957.Effect of speed governor dead-band on tie-line power and frequency control performance, Am. Inst. Electr. Eng (AIEE). Trans., 76, 429–435,Google Scholar
  29. 29.
    IEEE Standard 122–1991, Recommended practice for functional and performance characteristics of control systems for steam turbine–generator units, 1992.Google Scholar
  30. 30.
    Taylor, C. W. Lee K. Y. Dave, D. P. 1979.Automatic generation control analysis with governor dead band effects, IEEE Trans. Power App. Syst., 98, 2030–2036,CrossRefGoogle Scholar
  31. 31.
    Tripathy, S. C. Hope G. S. Malik, O. P. 1982.Optimization of load frequency control parameters with reheat steam turbines and governors dead-band nonlinearity, IEE Proc. Gener. Transm. Distrib., 129, (1)10–16,CrossRefGoogle Scholar
  32. 32.
    Tripathy, S. C. Bhatti, T. S. Jha, C. S. Malik O. P. Hope, G. S. 1984.Sampled data automatic generation control analysis with reheat steam turbines and governor dead-band effects, IEEE Trans. Power App. Syst., 103, (5)1045–1051,CrossRefGoogle Scholar
  33. 33.
    Sasaki T. Enomoto, K. 2002.Dynamic analysis of generation control performance standards, IEEE Trans. Power Syst., 17, (3)806–811,CrossRefGoogle Scholar
  34. 34.
    Mahmoud, M. S. 2000.Robust control and filtering for time-delay systems. Marcel Dekker, New York, NY:MATHGoogle Scholar
  35. 35.
    Aweya, J. Montuno D. Y. Ouellette, M. 2004.Effects of control loop delay on the stability of a rate control algorithm, Int. J. Commun. Syst., 17, 833–850,CrossRefGoogle Scholar
  36. 36.
    Niculescu, S. I. 2001.Delay effects on stability: A robust control approach. Springer, Berlin:MATHGoogle Scholar
  37. 37.
    Bhowmik, S. Tomosovic K. Bose, A. 2004.Communication models for third party load frequency control, IEEE Trans. Power Syst., 19, (1)543–548,CrossRefGoogle Scholar
  38. 38.
    Bevrani H. Hiyama, T. 2007.Robust load-frequency regulation: A real-time laboratory experiment, Optimal Control Appl. Methods, 28, (6)419–433,CrossRefMathSciNetGoogle Scholar
  39. 39.
    Hiyama, T. Nagata T. Funabashi, T. 2004.Multi-agent based automatic generation control of isolated stand alone power system, Proc. Int. Conf. Power Syst. Technol., 1, 139–143,CrossRefGoogle Scholar
  40. 40.
    Bevrani H. Hiyama T. 2005.A robust solution for PI-based LFC problem with communication delays, IEEJ Trans. Power Energy, 25, (12)1188–1193,CrossRefGoogle Scholar
  41. 41.
    Yu X. Tomosovic, K. 2004.Application of linear matrix inequalities for load frequency control with communication delays, IEEE Trans. Power Syst., 19, (3)1508–1515,CrossRefGoogle Scholar
  42. 42.
    Bevrani H. Hiyama, T. 2007.Robust decentralized PI based LFC design for time-delay power systems, Energy Convers. Manage., 49, 193–204,CrossRefGoogle Scholar
  43. 43.
    S. Fukushima, T. Sasaki, S. Ihara, et al., Dynamic analysis of power system frequency control, Proc. CIGRE 2000 Session, No. 38–240, Paris, 2000.Google Scholar
  44. 44.
    H. Bevrani and T. Hiyama, On load–frequency regulation with time delays: Design and realtime implementation, IEEE Trans. Energy Convers., in press.Google Scholar
  45. 45.
    Hiskens I. A. Alseddiqui, Jassim 2006.Sensitivity, approximation, and uncertainty in power system dynamic simulation, IEEE Trans. Power Syst., 21, (4)1808–1820,CrossRefGoogle Scholar
  46. 46.
    Al-Othman A. K. Irving, M. R. 2005.A comparative study of two methods for uncertainty analysis in power system state estimation, IEEE Trans. Power Syst., 20, (2)1181–1182,CrossRefGoogle Scholar
  47. 47.
    Hockenberry J. R. Lesieutre, B. C. 2004.Evaluation of uncertainty in dynamic simulations of power system models: The probabilistic collocation method, IEEE Trans. Power Syst., 19, (3)1483–1491,CrossRefGoogle Scholar
  48. 48.
    Al-Othman A. K. Irving, M. R. 2005.Uncertainty modeling in power system state estimation, IEE Proc. Gener. Transm. Distrib., 152, (2)233–239,CrossRefGoogle Scholar
  49. 49.
    Maslennikov, V. A. Ustinov S.M. Milanovic, J. V. 2002.Method for considering uncertainties for robust tuning of PSS and evaluation of stability limits, IEE Proc. Gener. Transm. Distrib., 149, (3)295–299,CrossRefGoogle Scholar
  50. 50.
    Saric A. T. Stankovic, A. M. 2005.Model uncertainty in security assessment of power systems, IEEE Trans. Power Syst., 20, (3)1398–1407,CrossRefGoogle Scholar
  51. 51.
    Bevrani, H. Mitani Y. Tsuji, K. 2004.On robust load–frequency regulation in a restructured power system, IEEJ Trans. Power Energy, 124-B, (2)190–198,CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

    There are no affiliations available

    Personalised recommendations