Advertisement

Real Power Compensation and Frequency Control

Chapter
Part of the Power Electronics and Power Systems book series (PEPS)

This chapter introduces the subject of real power and frequency control, providing definitions and basic concepts. The load–frequency control mechanism of a single control area is first described and then extended to a multi-area controlc system. Tie-line bias control and its application to a multi-area frequency control system are presented. Past achievements in the frequency control literature are briefly reviewed.

2.1 Fundamental Frequency Control Loops

The frequency of a power system is dependent on real power balance. A change in real power demand at one point of a network is reflected throughout the system by a change in frequency. Therefore, system frequency provides a useful index to indicate system generation and load imbalance. Any short-term energy imbalance will result in an instantaneous change in system frequency as the disturbance is initially offset by the kinetic energy of the rotating plant. Significant loss in the generation without an adequate system response can...

Keywords

Power System Frequency Control Superconductivity Magnetic Energy Storage Quantitative Feedback Theory Interconnected Power System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kundur, P. 1994.Power System Stability and Control. McGraw-Hill, New York, NY:Google Scholar
  2. 2.
    Nagsarkar T. K. Sukhija, M. S. 2007.Power System analysis. Oxford University Press, New Delhi:Google Scholar
  3. 3.
    CIGRE Task Force 38.02.08, Long-Term Dynamics: Phase II, CIGRE Technical Brochure No. 102, 1995.Google Scholar
  4. 4.
    Kurita, A. Okubo, H. Obi K. et al. 1993.Multiple time-scale dynamic simulation, IEEE Trans. Power Syst., vol. 8, pp. 216–223,CrossRefGoogle Scholar
  5. 5.
    Anderson P. M. Fouad, A. A. 2003.Power System Control and Stability. 2nd Edition, IEEE Press, USA:Google Scholar
  6. 6.
    NEMMCO, Frequency and Time Deviation Monitoring in NEM, vol. 2007, NEMCO, 2007, Available on-line at http://www.nemmco.com.au/powersystemops/250–0069.pdf.
  7. 7.
    Luo, C. Golestani Far, H. Banakar, H. et al. 2007.Estimation of wind penetration as limited by frequency deviation, IEEE Trans. Energy Convers., vol. 22, no. 3, pp. 783–791,CrossRefGoogle Scholar
  8. 8.
    Jaleeli, N. Vanslyck, L. S. 1999.NERC's new control performance standards, IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1092–1099,CrossRefGoogle Scholar
  9. 9.
    Yao, M. Shoults, R. R. Kelm, R. 2000.AGC logic based on NERC's new control performance standard and disturbance control standard, IEEE Trans. Power Syst., vol. 15, no. 2, pp. 852–857,CrossRefGoogle Scholar
  10. 10.
    Hoonchareon, N. Ong, C. M. Kramer, R. A. 2002.Feasibility of decomposing ACE1, to identify the impact of selected loads on CPS1 and CPS2 IEEE Trans. Power Syst., vol. 17, no. 3, pp. 752–756,CrossRefGoogle Scholar
  11. 11.
    NERC, NERC Operating Manual, Princeton, NJ, 2002.Google Scholar
  12. 12.
    Kumar I. P. Kothari, D. P. 2005.Recent philosophies of automatic generation control strategies in power systems, IEEE Trans. Power. Syst., vol. 20, no. 1, pp. 346–357,CrossRefGoogle Scholar
  13. 13.
    Concordia C. Kirchmayer, L. K. 1953.Tie line power and frequency control of electric power systems, Am. Inst. Electr. Eng. Trans., vol. 72, pp. 562–572, pt. II,Google Scholar
  14. 14.
    Kirchmayer, L. K. 1959.Economic Control of Interconnected Systems. Wiley, New York, NY:Google Scholar
  15. 15.
    Cohn, N. 1957.Some aspects of tie-line bias control on interconnected power systems, Am. Inst. Electr. Eng. Trans., vol. 75, pp. 1415–1436,Google Scholar
  16. 16.
    Cohn, N. 1967.Considerations in the regulation of interconnected area, IEEE Trans. Power Syst., vol. PAS-86, pp. 1527–1538,CrossRefGoogle Scholar
  17. 17.
    Van Ness, J. E. 1963.Root loci of load frequency control systems, IEEE Trans. Power App. Syst., vol. PAS-82, no. 5, pp. 712–726,Google Scholar
  18. 18.
    IEEE Committee Report, Standard definitions of terms for automatic generation control on electric power systems, IEEE Trans. Power App. Syst., vol. PAS-89, 1970.Google Scholar
  19. 19.
    Elgerd O. I. Fosha, C. 1970.Optimum megawatt-frequency control of multiarea electric energy systems, IEEE Trans. Power App. Syst., vol. PAS-89, no. 4, pp. 556–563,CrossRefGoogle Scholar
  20. 20.
    Fosha C. Elgerd, O. I. 1970.The megawatt-frequency control problem: A new approach via optimal control, IEEE Trans. Power App. Syst., vol. PAS-89, no. 4, pp. 563–577,CrossRefGoogle Scholar
  21. 21.
    IEEE PES Committee Report, Dynamic models for steam and hydro-turbines in power system studies, IEEE Trans. Power App. Syst., vol. PAS-92, 1973.Google Scholar
  22. 22.
    Elgerd, O. I. 1982.Electric Energy System Theory: An Introduction, 2nd Edition, McGraw-Hill, New York, NY:Google Scholar
  23. 23.
    IEEE PES Working Group, Hydraulic turbine and turbine control models for system dynamic, IEEE Trans. Power Syst., vol. PWRS-7, no. 1, pp. 167–174, 1992.Google Scholar
  24. 24.
    IEEE PES Committee Report, Current operating problems associated with automatic generation control, IEEE Trans. Power App. Syst., vol. PAS-98, 1979.Google Scholar
  25. 25.
    Jaleeli, N. Ewart, D. N. Fink, L. H. 1992.Understanding automatic generation control, IEEE Trans. Power Syst., vol. 7, no. 3, pp. 1106–1112,CrossRefGoogle Scholar
  26. 26.
    Green, R. K. 1996.Transformed automatic generation control, IEEE Trans. Power Syst., vol. 11, no. 4, pp. 1799–1804,CrossRefGoogle Scholar
  27. 27.
    Kwatny, H. G. Kalnitsky, K. C. Bhatt, A. 1975 An optimal tracking approach to load frequency control, IEEE Trans. Power App. Syst., vol. PAS-94, no. 5, pp. 1635–1643, .CrossRefGoogle Scholar
  28. 28.
    Concordia, C. Kirchmayer, L. K. Szymanski, E. A. 1957.Effect of speed governor dead-band on tie-line power and frequency control performance, Am. Inst. Electr. Eng. Trans., vol. 76, pp. 429–435,Google Scholar
  29. 29.
    Wu F. F. Dea, V. S. 1978.Describing-function analysis of automatic generation control system with governor deadband, Electr. Power Syst. Res., vol. 1, no. 2, pp. 113–116,CrossRefGoogle Scholar
  30. 30.
    Oni, B. Graham, H. Walker, L. 1981.Investigation of nonlinear tie-line bias control of interconnected power systems, IEEE Trans. Power App. Syst., vol. PAS-100, no. 5, pp. 2350–2356,CrossRefGoogle Scholar
  31. 31.
    Tripathy, S. C. Bhatti, T. S. Jha, C. S. Malik, O. P. Hope, G. S. 1984.Sampled data automatic generation control analysis with reheat steam turbines and governor dead band effects, IEEE Trans. Power App. Syst., vol. PAS-103, no. 5, pp. 1045–1051,CrossRefGoogle Scholar
  32. 32.
    Hiyama, T. 1982.Optimisation of discrete-type load–frequency regulators considering generation-rate constraints, IEE Proc., vol. 129, no. 6, pp. 285–289, Pt. C,Google Scholar
  33. 33.
    Yang, T. C. Cimen, H. Zhu, Q. M. 1998.Decentralised load–frequency controller design based on structured singular values, Proc. Inst. Electr. Eng. C, vol. 145, no. 1, pp. 7–14,Google Scholar
  34. 34.
    Yamashita K. Miyagi, H. 1989.Load–frequency self-tuning regulator for interconnected power systems with unknown deterministic load disturbances, Int. J. Control, vol. 49, no. 5, pp. 1556–1568,Google Scholar
  35. 35.
    Lee, A. Yee, H. Teo, C. Y. 1991.Self-tuning algorithm for automatic generation control in an interconnected power system, Electr. Power Syst. Res., vol. 20, no. 2, pp. 157–165,CrossRefGoogle Scholar
  36. 36.
    Douglas, L. D. Green, T. A. Kramer, R. A. 1994.New approaches to the AGC nonconforming load problem, IEEE Trans. Power Syst., vol. 9, no. 2, pp. 619–628,CrossRefGoogle Scholar
  37. 37.
    Pan T. Liaw, C. M. 1989.An adaptive controller for power system and load frequency control, IEEE Trans. Power Syst., vol. 4, no. 1, pp. 122–128,CrossRefGoogle Scholar
  38. 38.
    Shoults R. R. Ibarra, J. A. J. 1993.Multi-area adaptive LFC developed for a comprehensive AGC simulator, IEEE Trans. Power App. Syst., vol. 8, no. 2, pp. 541–547,CrossRefGoogle Scholar
  39. 39.
    Sheirah, M. A. Malik, O. P. Hope, G. S. 1986.Minimum variance strategy for load frequency control, Int. J. Electr. Power Energy Syst., vol. 8, no. 2, pp. 120–126,CrossRefGoogle Scholar
  40. 40.
    Douglas, L. D. Green, T. A. Kramer, R. A. 1994.New approach to the AGC non-conforming load program, IEEE Trans. Power Syst., vol. 9, no. 2, pp. 619–628,CrossRefGoogle Scholar
  41. 41.
    Schulte, R. P. 1996.An automatic generation control modification for present demands on inter-connected power system, IEEE Trans. Power Syst., vol. 11, no. 3, pp. 1286–1294,CrossRefGoogle Scholar
  42. 42.
    Zhu, J. Z. Chang, C. S. Xu, G. Y. 1998.A new model and algorithm of secure and economic automatic generation control, Elec. Power Syst. Res., vol. 45, pp. 119–127,CrossRefGoogle Scholar
  43. 43.
    Hain, Y. Kulessky, R. Nudelman, G. 2000.Identification-based power unit model for load–frequency control purposes, IEEE Trans. Power Syst., vol. 15, no. 4, pp. 1313–1321,CrossRefGoogle Scholar
  44. 44.
    Maruejouls, N. Margotin, T. Trotignon, M. Dupuis, P. L. Tesseron, J. M. 2000.Measurement of the load frequency control system service: Comparison between American and European indicators, IEEE Trans. Power Syst., vol. 15, no. 4, pp. 1382–1387,CrossRefGoogle Scholar
  45. 45.
    Trudnowski, D. J. McReynolds, W. L. Johnson, J. M. 2001.Real-time very short-term load prediction for power system automatic generation control, IEEE Trans. Control Syst. Technol., vol. 9, no. 2, pp. 254–260,CrossRefGoogle Scholar
  46. 46.
    Gross G. Lee, J. W. 2001.Analysis of load frequency control performance assessment criteria, IEEE Trans. Power Syst., vol. 16, no. 3, pp. 520–532,CrossRefGoogle Scholar
  47. 47.
    Hoonchareon, N. Ong, C. M. Kramer, R. A. 2002.Implementation of an ACE1, decomposition method IEEE Trans. Power Syst., vol. 17, no. 3, pp. 757–761,CrossRefGoogle Scholar
  48. 48.
    Moon, Y. H. Ryu, H. S. Lee, J. G. Song, K. B. Shin, M. C. 2002.Extended integral control for load frequency control with the consideration of generation-rate constraints, Electr. Power Energy Syst., vol. 24, pp. 263–269,CrossRefGoogle Scholar
  49. 49.
    Chien, L. R. C. Ong, C. M. Kramer, R. A. 2003.Field tests and refinements of an ACE model, IEEE Trans. Power Syst., vol. 18, no. 2, pp. 898–903,CrossRefGoogle Scholar
  50. 50.
    Chien, L. R. C. Hoonchareon, N. Ong, C. M. Kramer, R. A. 2003.Estimation of β for adaptive frequency bias setting in load frequency control, IEEE Trans. Power Syst., vol. 18, no. 2, pp. 904–911,CrossRefGoogle Scholar
  51. 51.
    Stojkovic, B. 2004.An original approach for load–frequency control – the winning solution in the second UCTE synchronous zone, Electr. Power Syst. Res., vol. 69, pp. 59–68,CrossRefGoogle Scholar
  52. 52.
    Tacker, E. C. Lee, C. C. Reddoch, T. W. Tan, T. O. Julich, P. M. 1972.Optimal control of interconnected electric energy systems: A new formulation, Proc. IEEE, vol. 60, no. 10, pp. 1239–1241,CrossRefGoogle Scholar
  53. 53.
    Bohn E. V. Miniesy, S. M. 1972.Optimum load frequency sample data control with randomly varying system disturbances, IEEE Trans. Power App. Syst., vol. PAS-91, no. 5, pp. 1916–1923,CrossRefGoogle Scholar
  54. 54.
    Yamashita K. Taniguchi, T. 1986.Optimal observer design for load frequency control, Int. J. Electr. Power Energy Syst., vol. 8, no. 2, pp. 93–100,CrossRefGoogle Scholar
  55. 55.
    Feliachi, A. 1987.Load frequency control using reduced order models and local observers, Int. J. Energy Syst., vol. 7, no. 2, pp. 72–75,Google Scholar
  56. 56.
    Rubaai A. Udo, V. 1992.An adaptive control scheme for LFC of multiarea power systems. Part I: Identification and functional design, Part-II: Implementation and test results by simulation, Electr. Power Syst. Res., vol. 24, no. 3, pp. 183–197,CrossRefGoogle Scholar
  57. 57.
    Velusami S. Ramar, K. 1997.Design of observer-based decentralized-frequency controllers for interconnected power systems, Int. J. Power Energy Syst., vol. 17, no. 2, pp. 152–160,Google Scholar
  58. 58.
    Hain, Y. Kulessky, R. Nudelman, G. 2000.Identification-based power unit model for load–frequency control purposes, IEEE Trans. Power Syst., vol. 15, no. 4, pp. 1313–1321,CrossRefGoogle Scholar
  59. 59.
    Calovic, M. S. 1972.Linear regulator design for a load and frequency control, IEEE Trans. Power App. Syst., vol. 91, pp. 2271–2285,CrossRefGoogle Scholar
  60. 60.
    Hiyama, T. 1982.Design of decentralised load–frequency regulators for interconnected power systems, IEE Proc., vol. 129, no. 1, pp. 17–23, Pt. C,Google Scholar
  61. 61.
    Bevrani, H. Hiyama, T. Mitani, Y. Tsuji, K. 2007.Automatic generation control: A decentralized robust approach, Intell. Autom. Soft Comput. J., vol. 13, no. 3, pp. 273–287,Google Scholar
  62. 62.
    Kanniah, J. Tripathy, S. C. Malik, O. P. Hope, G. S. 1984.Microprocessor-based adaptive load–frequency control, IEE Proc. Gener. Transm. Distrib., vol. 131, no. 4, pp. 121–128,CrossRefGoogle Scholar
  63. 63.
    Feliachi, A. 1987.Optimal decentralized load frequency control, IEEE Trans. Power Systems, vol. PWRS-2, no. 2, pp. 379–384,CrossRefGoogle Scholar
  64. 64.
    Park Y. M. Lee, K. L. 1987.Optimal decentralized load frequency control, Int. J. Electr. Power Energy Syst., vol. 27, pp. 279–288,Google Scholar
  65. 65.
    Malik, O. P. Kumar, A. Hope, G. S. 1988.A load frequency control algorithm based on a generalized approach, IEEE Trans. Power Syst., vol. 3, no. 2, pp. 375–382,CrossRefGoogle Scholar
  66. 66.
    Aldeen M. Marsh, J. F. 1991.Decentralised proportional-plus-integral design method for interconnected power systems, IEE Proc., vol. 138, no. 4, pp. 285–289, Pt. C,Google Scholar
  67. 67.
    Liaw C. M. Chao, K. H. 1993.On the design of an optimal automatic generation controller for interconnected power systems, Int. J. Control, vol. 58, pp. 113–127,MathSciNetCrossRefGoogle Scholar
  68. 68.
    Moorthi V. R. Aggarwal, P. P. 1982.Suboptimal and near optimal control of a load–frequency control system, IEE Proc., vol. 129, no. 6, pp. 1635–1660, Pt. C,Google Scholar
  69. 69.
    Moorthi R. Aggarawal, R. P. 1972.Suboptimal and near optimal control of a load frequency control system, Proc. Inst. Electr. Eng., vol. 119, pp. 1653–1660,CrossRefGoogle Scholar
  70. 70.
    Choi, S. S. Sim, H. K. Tan, K. S. 1981.Load frequency control via constant limited-state feedback, Electr. Power Syst. Res., vol. 4, no. 4, pp. 265–269,CrossRefGoogle Scholar
  71. 71.
    Aldeen M. Trinh, H. 1994.Load frequency control of interconnected power systems via constrained feedback control schemes, Int. J. Comput. Electr. Eng., vol. 20, no. 1, pp. 71–88,CrossRefGoogle Scholar
  72. 72.
    Bengiamin N. N. Chan, W. C. 1982.Variable structure control of electric power generation, IEEE Trans. Power App. Syst., vol. 101, pp. 376–380,CrossRefGoogle Scholar
  73. 73.
    Sivaramakrishnan, A. Y. Hartiharan, M. V. Srisailam, M. C. 1984.Design of variable structure load frequency controller using pole assignment technique, Int. J. Control, vol. 40, pp. 487–498,CrossRefGoogle Scholar
  74. 74.
    Hsu Y. Y. Chan, W. C. 1984.Optimal variable structure control of interconnected hydrothermal power systems, Int. J. Electr. Power Energy Syst., vol. 6, pp. 221–229,CrossRefGoogle Scholar
  75. 75.
    Al-Hamouz A. Z. Al-Magid, Y. L. 1993.Variable structure load frequency controllers for multiarea power systems, Electr. Power Energy Syst., vol. 15, pp. 293–300,CrossRefGoogle Scholar
  76. 76.
    J. Erschler, F. Roubeliat, J. P. Vernhes, Automation of a hydroelectric power station using variable-structure control systems, Automatica, no. 10, pp. 31–36, 1974.Google Scholar
  77. 77.
    Chan W. C. Hsu, Y. Y. 1981.Automatic generation control of interconnected power systems using variable-structure controller, Proc. Inst. Electr. Eng. C, vol. 128, no. 5, pp. 269–279,Google Scholar
  78. 78.
    Kumar, A. Malik, O. P. Hope, G. S. 1985.Variable-structure-system control applied to AGC of an interconnected power system, Proc. Inst. Electr. Eng. C, vol. 132, no. 1, pp. 23–29,Google Scholar
  79. 79.
    Das, D. Kothari, M. L. Kothari, D. P. Nanda, J. 1991.Variable structure control strategy to automatic generation control of interconnected reheat thermal systems, Proc. Inst. Electr. Eng. Control Theory Appl., vol. 138, no. 6, pp. 579–585,CrossRefGoogle Scholar
  80. 80.
    Wang, Y. Zhou, R. wen, C. 1993.Robust load–frequency controller design for power systems, IEE Proc., vol. 140, no. 1, pp. 11–16, Pt. C,Google Scholar
  81. 81.
    Lim, K. Y. Wang, Y. Zhou, R. 1996.Robust decentralized load–frequency control of multi-area power systems, IEE Proc. Gener. Transm. Distrib., vol. 143, no. 5, pp. 377–386,CrossRefGoogle Scholar
  82. 82.
    Yang, T. C. Cimen, H. ZHU, Q. M. 1998.Decentralised load frequency controller design based on structured singular values, IEE Proc. Gener. Transm. Distrib., vol. 145, no. 1, pp. 7–14,CrossRefGoogle Scholar
  83. 83.
    H. Bevrani, Application of Kharitonov's theorem and its results in load–frequency control design, J. Electr. Sci. Technol.-BARGH (in Persian), no. 24, pp. 82–95, 1998.Google Scholar
  84. 84.
    Lim, K. Y. Wang, Y. Guo, G. Zhou, R. 1998.A new decentralized robust controller design for multi-area load–frequency control via complete state feedback, Optimal Control Appl. Methods, vol. 19, pp. 345–361,MathSciNetCrossRefGoogle Scholar
  85. 85.
    Stankovic, A. M. Tadmor. G. Sakharuk, T. A. 1998.On robust control analysis and design for load frequency regulation, IEEE Trans. Power Syst., vol. 13, no. 2, pp. 449–455,CrossRefGoogle Scholar
  86. 86.
    Ray, G. Prasad, A. N. Bhattacharyya, T. K. 1999.Design of decentralized robust load–frequency controller based on SVD method, Comput. Electr. Eng., vol. 25, pp. 477–492,CrossRefGoogle Scholar
  87. 87.
    Ray, G. Prasad, A. N. Prasad, G. D. 1999.A new approach to the design of robust load–frequency controller for large scale power systems, Electr. Power Syst. Res., vol. 51, pp. 13–22,CrossRefGoogle Scholar
  88. 88.
    Liu, J. Fadali, M. S. Zhou, R. 1999.Performance constrained stabilization of uncertain systems: Application to load–frequency control, Comput. Electr. Eng., vol. 25, pp. 135–152,CrossRefGoogle Scholar
  89. 89.
    Azzam, M. 1999.Robust automatic generation control, Energy Convers. Manage., vol. 40, pp. 1413–1421,CrossRefGoogle Scholar
  90. 90.
    Ishi, T. Shirai, G. Fujita, G. 2001.Decentralized load frequency based on \({\rm H}_{\infty}\) control, Electr. Eng. Jpn, vol. 136, no. 3, pp. 28–38,CrossRefGoogle Scholar
  91. 91.
    Rerkpreedapong, D. Hasanovic, A. Feliachi, A. 2003.Robust load frequency control using genetic algorithms and linear matrix inequalities, IEEE Trans. Power Syst., vol. 18, no. 2, pp. 855–861,CrossRefGoogle Scholar
  92. 92.
    Yang, T. C. Ding, Z. T. Yu, H. 2002.Decentralised power system load frequency control beyond the limit of diagonal dominance, Electr. Power Energy Syst., vol. 24, pp. 173–184,CrossRefGoogle Scholar
  93. 93.
    Azzam M. Mohamed, Y. S. 2002.Robust controller design for automatic generation control based on Q-parameterization, Energy Convers. Manage., vol. 43, pp. 1663–1673,CrossRefGoogle Scholar
  94. 94.
    Wang, Y. Zhou, R. Wen, C. 1994.New robust adaptive load frequency control with system parameter uncertainties, Proc. Inst. Electr. Eng., vol. 141, no. 3, pp. 184–190,Google Scholar
  95. 95.
    Bevrani, H. Mitani, Y. Tsuji, K. 2004.Robust decentralized load–frequency control using an iterative linear matrix inequalities algorithm, IEE Proc. Gener. Transm. Distrib., vol. 151, no. 3, pp. 347–354,CrossRefGoogle Scholar
  96. 96.
    Bevrani H. Hiyama, T. 2007.Robust load–frequency regulation: A real-time laboratory experiment, Optimal Control Appl. Methods, vol. 28, no. 6, pp. 419–433,MathSciNetCrossRefGoogle Scholar
  97. 97.
    H. Bevrani and T. Hiyama, On load–frequency regulation with time delays: Design and real-time implementation, IEEE Trans. Energy Convers., in press.Google Scholar
  98. 98.
    Sheirah M. A. A-el-Fattah, M. M. 1984.Improved load–frequency self-tuning regulator, Int. J. Control, vol. 39, pp. 143–158,CrossRefGoogle Scholar
  99. 99.
    Vajk, I. Vajta, M. Keviczky, L. Haber, R. Hetthessy, J. Kovacs, K. 1985.Adaptive load frequency control of the Hungarian power system, Automatica, vol. 21, pp. 129–137,CrossRefGoogle Scholar
  100. 100.
    Pan C. T. Liaw, C. M. 1989.An adaptive controller for power system load frequency control, IEEE Trans. Power Syst., vol. PWRS-4, pp. 122–128,CrossRefGoogle Scholar
  101. 101.
    Rubaai A. Udo, V. 1994.Self-tuning load frequency control: Multilevel adaptive approach, IEE Proc. Gener. Transm. Distrib., vol. 141, no. 4, pp. 285–290,CrossRefGoogle Scholar
  102. 102.
    Ross C. W. Green, T. A. 1972.Dynamic performance evaluation of a computer controlled electric power system, IEEE Trans. Power App. Syst., vol. PAS-91, pp. 1156–1165,CrossRefGoogle Scholar
  103. 103.
    Demello, F. P. Mills, R. J. B'Rells, W. F. 1973.Automatic generation control, part I – Process modeling, IEEE Trans. Power App. Syst., vol. PAS-92, pp. 710–715,CrossRefGoogle Scholar
  104. 104.
    L. M. Smith, L. H. Fink, R. P. Schulz, Use of computer model of interconnected power system to assess generation control strategies, IEEE Trans. Power App. Syst., vol. 94, no. 5, 1975.Google Scholar
  105. 105.
    Hari, L. Kothari, M. L. Nanda, J. 1991.Optimum selection of speed regulation parameters for automatic generation control in discrete mode considering generation rate constraints, Proc. Inst. Electr. Eng. C, vol. 138, no. 5, pp. 401–406,Google Scholar
  106. 106.
    Taylor C. W. Cresap, R. L. 1976.Real-time power system simulations for automatic generation control, IEEE Trans. Power App. Syst., vol. PAS-95, pp. 375–384,CrossRefGoogle Scholar
  107. 107.
    Kumar, A. 1989.Discrete load frequency control of interconnected power system, Int. J. Energy Syst., vol. 9, no. 2, pp. 73–77,Google Scholar
  108. 108.
    Kothari, M. L. Nanda, J. Kothari, D. P. Das, D. 1989.Discrete mode automatic generation control of a two area reheat thermal system with new area control error, IEEE Trans. Power App. Syst., vol. 4, no. 2, pp. 730–738,CrossRefGoogle Scholar
  109. 109.
    Prowse, D. C. H. 1993.Improvements to a standard automatic generation control filter algorithm, IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1204–1210,CrossRefGoogle Scholar
  110. 110.
    Beaufays, F. Abdel-Magid, Y. Widrow, B. 1994.Application of neural networks to load–frequency control in power systems, Neural Networks, vol. 7, no. 1, pp. 183–194,CrossRefGoogle Scholar
  111. 111.
    Chaturvedi, D. K. Satsangi, P. S. Kalra, P. K. 1999.Load frequency control: A generalised neural network approach, Electr. Power Energy Syst., vol. 21, pp. 405–415,CrossRefGoogle Scholar
  112. 112.
    Zeynelgil, H. L. Demirorem, A. Sengor, N. S. 2002.Load frequency control for power system with reheat steam turbine and governor deadband non-linearity by using neural network controller, Eur. Trans. Electr. Power, vol. 12, no. 3, pp. 179–184,CrossRefGoogle Scholar
  113. 113.
    Bevrani, H. Hiyama, T. Mitani, Y. Tsuji, K. Teshnehlab, M. 2006.Load–frequency regulation under a bilateral LFC scheme using flexible neural networks, Eng. Intell. Syst. J., vol. 14, no. 2, pp. 109–117,Google Scholar
  114. 114.
    Bevrani, H. 2002.A novel approach for power system load frequency controller design, Proc. of IEEE/PES T'D 2002 Asia Pacific, Yokohama, Japan, vol. 1, pp. 184–189,Google Scholar
  115. 115.
    C. F. Juang and C. F. Lu, Load–frequency control by hybrid evolutionary fuzzy PI controller, IEE Proc. Gener. Transm. Distrib., vol. 153, no. 2, 2006.Google Scholar
  116. 116.
    Chang C. S. Fu, W. 1997.Area load frequency control using fuzzy gain scheduling of PI controllers, Electr. Power Syst. Res., vol. 42, pp. 145–152,CrossRefGoogle Scholar
  117. 117.
    Chown G. A. Hartman, R. C. 1998.Design and experience with a fuzzy logic controller for automatic generation control (AGC), IEEE Trans. Power Syst., vol. 13, no. 3, pp. 965–970,CrossRefGoogle Scholar
  118. 118.
    Talaq J. Al-Basri, F. 1999.Adaptive fuzzy gain scheduling for load frequency control, IEEE Trans. Power Syst., vol. 14, no. 1, pp. 145–150,CrossRefGoogle Scholar
  119. 119.
    Al-Hamouz Z. M. Al-Duwaish, H. N. 2000.A new load frequency variable structure controller using genetic algorithm, Electr. Power Syst. Res., vol. 55, pp. 1–6,CrossRefGoogle Scholar
  120. 120.
    Demirorem, A. Kent, S. Gunel, T. 2002.A genetic approach to the optimization of automatic generation control parameters for power systems, Eur. Trans. Electr. Power, vol. 12, no. 4, pp. 275–281,CrossRefGoogle Scholar
  121. 121.
    El-Sherbiny, M. K. El-Saady, G. Yousef, A. M. 2002.Efficient fuzzy logic load–frequency controller, Energy Convers. Manage., vol. 43, pp. 1853–1863,CrossRefGoogle Scholar
  122. 122.
    Yesil, E. Guzelkaya, M. Eksin, I. 2004.Self tuning fuzzy PID type load frequency controller, Energy Convers. Manage., vol. 45, pp. 377–390,CrossRefGoogle Scholar
  123. 123.
    Indulkar C. S. Raj, B. 1995.Application of fuzzy controller to automatic generation control, Electr. Mach. Power Syst., vol. 23, no. 2, pp. 209–220,CrossRefGoogle Scholar
  124. 124.
    Gegov A. E. Frank, P. M. 1995.Decomposition of multivariable systems for distributed fuzzy control [power system load frequency control], Fuzzy Sets Syst., vol. 73, no. 3, pp. 329–340,MathSciNetCrossRefGoogle Scholar
  125. 125.
    Abdel-Magid Y. L. Dawoud, M. M. 1996.Optimal AGC tuning with genetic algorithms, Electr. Power Syst. Res., vol. 38, no. 3, pp. 231–238,CrossRefGoogle Scholar
  126. 126.
    Abdennour, A. 2002.Adaptive optimal gain scheduling for the load frequency control problem, Electr. Power Compon. Syst., vol. 30, no. 1, pp. 45–56,CrossRefGoogle Scholar
  127. 127.
    Aditya S. K. Das, D. 2003.Design of load frequency controllers using genetic algorithm for two area interconnected hydro power system, Electr. Power Compon. Syst., vol. 31, no. 1, pp. 81–94,CrossRefGoogle Scholar
  128. 128.
    Djukanovic, M. Novicevic, M. Sobajic, D. J. Pao, Y. P. 1995.Conceptual development of optimal load frequency control using artificial neural networks and fuzzy set theory, Int. J. Eng. Intell. Syst. Electr. Eng. Commun., vol. 3, no. 2, pp. 95–108,Google Scholar
  129. 129.
    Chang, C. S. Fu, W. Wen, F. 1998.Load frequency controller using genetic algorithm based fuzzy gain scheduling of PI controller, Electr. Mach. Power Syst., vol. 26, pp. 39–52,CrossRefGoogle Scholar
  130. 130.
    Karnavas Y. L. Papadopoulos, D. P. 2002.AGC for autonomous power system using combined intelligent techniques, Electr. Power Syst. Res., vol. 62, pp. 225–239,CrossRefGoogle Scholar
  131. 131.
    I. Ngamroo, Y. Mitani, K. Tsuji, Application of SMES coordinated with solid-state phase shifter to load frequency control, IEEE Trans. Appl. Superconduct., vol. 9, no. 2, 1999.Google Scholar
  132. 132.
    Demiroren, A. 2002.Application of a self-tuning to automatic generation control in power system including SMES units, ETEP, vol. 12, no. 2, pp. 101–109,CrossRefGoogle Scholar
  133. 133.
    Demiroren A. Yesil, E. 2004.Automatic generation control with fuzzy logic controllers in the power system including SMES units, Electr. Power Energy Syst., vol. 26, pp. 291–305,CrossRefGoogle Scholar
  134. 134.
    Tripathy, S. C. 1997.Improved load–frequency control with capacitive energy storage, Energy Convers. Manage., vol. 38, no. 6, pp. 551–562,CrossRefGoogle Scholar
  135. 135.
    Asano, H. Yajima, K. Kaya, Y. 1996.Influence of photovoltaic power generation on required capacity for load frequency control, IEEE Trans. Energy Convers., vol. 11, no. 1, pp. 188–193,CrossRefGoogle Scholar
  136. 136.
    Aditya S. K. Das, D. 2001.Battery energy storage for load frequency control of an interconnected power system, Electr. Power Syst. Res., vol. 58, pp. 179–185,CrossRefGoogle Scholar
  137. 137.
    Sasaki, T. Kadoya, T. Enomoto, K. 2004.Study on load frequency control using redox flow batteries, IEEE Trans. Power Syst., vol. 19, no. 1, pp. 660–667,CrossRefGoogle Scholar
  138. 138.
    Kunish, H. J. Kramer, K. G. Dominik, H. 1986.Battery energy storage – Another option for load–frequency control and instantaneous reserve,” IEEE Trans. Energy Convers., vol. EC-1, no. 3, pp. 46–51,Google Scholar
  139. 139.
    Paradkar, A. Davari, A. Feliachi, A. Biswas, T. 2004.Integration of a fuel cell into the power system using an optimal controller based on disturbance accommodation control theory, J. Power Sources, vol. 128, no. 2, pp. 218–230,CrossRefGoogle Scholar
  140. 140.
    Banakar, H. Luo, C. Ooi, B. T. 2008.Impacts of wind power minute to minute variation on power system operation, IEEE Trans. Power Syst., vol. 23, no. 1, pp. 150–160,CrossRefGoogle Scholar
  141. 141.
    Lalor, G. Mullane, A. O'Malley, M. 2005.Frequency control and wind turbine technology, IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1905–1913,CrossRefGoogle Scholar
  142. 142.
    Ullah, N. R. Thiringer, T. Karlsson, D. 2008.Temporary primary frequency control support by variable speed wind turbines: Potential and applications, IEEE Trans. Power Syst., vol. 23, no. 2, pp. 601–612,CrossRefGoogle Scholar
  143. 143.
    Morren, J. de Haan, S. W. H. Kling W. L. et al. 2006.Wind turbine emulating inertia and supporting primary frequency control, IEEE Trans. Power Syst., vol. 21, no. 1, pp. 433–434,CrossRefGoogle Scholar
  144. 144.
    Yoshida, Y. Machida, T. Nakamura, H. 1967.A method of automatic frequency ratio control by DC system, IEEE Trans. Power App. Syst., vol. PAS-86, no. 7, pp. 263–267,Google Scholar
  145. 145.
    Yoshida Y. Machida, T. 1969.Study of the effect of the DC link on frequency control in interconnected AC systems, IEEE Trans. Power App. Syst., vol. PAS-88, no. 7, pp. 1036–1042,CrossRefGoogle Scholar
  146. 146.
    Sanpei, M. Kakehi, A. Takeda, H. 1994.Application of multi-variable control for automatic frequency controller of HVDC transmission system, IEEE Trans. Power Deliv., vol. 9, no. 2, pp. 1063–1068,CrossRefGoogle Scholar
  147. 147.
    Rostamkolai, N. Wengner, C. A. Piwko, R. J. Elahi, H. Eitzmann, M. A. Garzi, G. Taetz, P. 1993.Control design of Santo Tome back-to back HVDC link, IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1250–1256,CrossRefGoogle Scholar
  148. 148.
    Lim, K. Y. Wang, Y. Zhou, R. 1997.Decentralised robust load–frequency control in coordination with frequency-controllable HVDC links, Int. J. Electr. Power Energy Syst., vol. 19, no. 7, pp. 423–431,CrossRefGoogle Scholar
  149. 149.
    Chritie R. D. Bose, A. 1996.Load frequency control issues in power system operation after deregulation, IEEE Trans. Power Syst., vol. 11, no. 3, pp. 1191–1200,CrossRefGoogle Scholar
  150. 150.
    Kumar, J. Hoe, N. G. K. Sheble, G. B. 1997.AGC simulator for price-based operation, Part I: A model, IEEE Trans. Power Syst., vol. 2, no. 12, pp. 527–532,CrossRefGoogle Scholar
  151. 151.
    Kumar, J. Hoe, N. G. K. Sheble, G. B. 1997.AGC simulator for price-based operation, Part II: Case study results, IEEE Trans. Power Syst., vol. 2, no. 12, pp. 533–538,CrossRefGoogle Scholar
  152. 152.
    Bakken B. H. Grande, O. S. 1998.Automatic generation control in a deregulated power system, IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1401–1406,CrossRefGoogle Scholar
  153. 153.
    Meliopoulos, A. P. S. Cokkinides, G. J. Bakirtzis, A. G. 1999.Load–frequency control service in a deregulated environment, Decis. Support Syst., vol. 24, pp. 243–250,CrossRefGoogle Scholar
  154. 154.
    Donde, V. Pai, M. A. Hiskens, I. A. 2001.Simulation and optimization in a AGC system after deregulation, IEEE Trans. Power Syst., vol. 16, no. 3, pp. 481–489,CrossRefGoogle Scholar
  155. 155.
    Arroyo J. M. Conejo, A. J. 2002.Optimal response of a power generator to energy, AGC, and reserve pool-based markets, IEEE Trans. Power Syst., vol. 17, no. 2, pp. 404–410,CrossRefGoogle Scholar
  156. 156.
    Delfino, B. Fornari, F. Massucco, S. 2002.Load–frequency control and inadvertent interchange evaluation in restructured power systems, IEE Proc. Gener. Transm. Distrib., vol. 149, no. 5, pp. 607–614,CrossRefGoogle Scholar
  157. 157.
    Bevrani, H. Mitani, Y. Tsuji, K. 2004.Robust AGC: Traditional structure versus restructured scheme, IEE J. Trans. Power Energy, vol. 124-B, no. 5, pp. 751–761,CrossRefGoogle Scholar
  158. 158.
    Bevrani, H. Mitani, Y. Tsuji, K. Bevrani H. 2005.Bilateral-based robust load–frequency control, Energy Convers. Manage., vol. 46, pp. 1129–1146,CrossRefGoogle Scholar
  159. 159.
    Liu, F. Song, Y. H. Ma, J. Mei, S. Lu, Q. 2003.Optimal load–frequency control in restructured power systems, IEE Proc. Gener. Transm. Distrib., vol. 150, no. 1, pp. 377–386,CrossRefGoogle Scholar
  160. 160.
    Bhowmik, S. Tomsovic, K. Bose, A. 2004.Communication models for third party load frequency control, IEEE Trans. Power Syst., vol. 19, no. 1, pp. 543–548,CrossRefGoogle Scholar
  161. 161.
    H. Bevrani, Decentralized Robust Load–Frequency Control Synthesis in Restructured Power Systems. PhD dissertation, Osaka University, 2004.Google Scholar
  162. 162.
    Vanslyck, L. Jaleeli, N. Kelley, W. R. 1989.Implications of frequency bias settings on interconnected system operation and inadvertent energy accounting, IEEE Trans. Power Syst., vol. 4, no. 2, pp. 712–723,CrossRefGoogle Scholar
  163. 163.
    Singh H. Papalexopoulos, A. 1999.Competitive procurement of ancillary services by an independent system operator, IEEE Trans. Power Syst., vol. 14, no. 2, pp. 498–504,CrossRefGoogle Scholar
  164. 164.
    Cheung, K. W. Shamsollahi, P. Sun, D. Milligan, J. Potishanak, M. 2000.Energy and ancillary service dispatch for the interim ISO New England electricity market, IEEE Trans. Power Syst., vol. 15, no. 3, pp. 968–974,CrossRefGoogle Scholar
  165. 165.
    Zhao, X. S. Wen, F. S. Gan, D. Q. Huang, M. X. Yu, C. W. Chung, C. Y. 2004.Determination of AGC capacity requirement and dispatch considering performance penalties, Electr. Power Syst. Res., vol. 70, no. 2, pp. 93–98,CrossRefGoogle Scholar
  166. 166.
    Bevrani H. Hiyama, T. 2007.Robust decentralized PI based LFC design for time-delay power systems, Energy Convers. Manage., vol. 49, pp. 193–204,CrossRefGoogle Scholar
  167. 167.
    Bevrani H. Hiyama, T. 2007.Robust load–frequency regulation: A real-time laboratory experiment, Optimal Control Appl. Methods, vol. 28, no. 6, pp. 419–433,MathSciNetCrossRefGoogle Scholar
  168. 168.
    Dellolio, G. Sforna, M. Bruno, C. Pozzi, M. 2005.A pluralistic LFC scheme for online resolution of power congestions between market zones, IEEE Trans. Power Syst., vol. 20, no. 4, pp. 2070–2077,CrossRefGoogle Scholar
  169. 169.
    Tyagi B. Srivastava, S. C. 2006.A decentralized automatic generation control scheme for competitive electricity market, IEEE Trans. Power Syst., vol. 21, no. 1, pp. 312–320,CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

    There are no affiliations available

    Personalised recommendations